現地レポート

砂防計画のための流砂量観測(魚野川での事例)

石田哲也·松本直樹

1. はじめに

平成10年7月に河川審議会総合土砂管理小委員 会による「流砂系の総合的な土砂管理に向けて」 の報告1)では、土砂が山腹斜面から渓流に入り、 河道を移動して、海へ入る過程において、土砂災 害や河川災害、貯水池の堆砂、河床低下、河口閉 塞等の災害がそれぞれの領域で発生する。こうし た状況を踏まえ、最上流部の山腹斜面から海岸の 漂砂域までの土砂移動が起こる領域全体を「流砂 系」として捉えることの必要性が指摘されている。 更に、土砂移動現象は不確定・不連続であり、長 時間に及ぶ現象であって、現状では十分な精度で 予知・予測することが難しいことから、現地調査、 観測によってデータを収集し、予知・予測手法の 向上を図るための研究を推進することが提言され、 これを基に、全国各地で土砂移動に関する観測が 一斉に始まった。

土砂移動現象の観測結果は、総合土砂管理のみ ではなく、土砂災害防止の観点からも重要で、観 測結果を基に数値計算等を活用することで、より 精度の高い砂防計画立案への基礎資料となる。

ここでは、湯沢砂防事務所が取り組んでいる土 砂移動に関する観測結果の紹介と観測に基づく再 現計算を試みた結果について報告する。

2. 調査対象と流砂量観測

2.1 調査対象

湯沢砂防事務所では、信濃川水系中流域に位置 する信濃川右支魚野川、同右支清津川、同右支中 津川を主として直轄砂防事業を実施している。そ れらの支川のうち、流砂量観測は、魚野川を対象 に実施している(図-1)。

2.2 流砂量観測方法

流砂量観測は魚野川流域4箇所で、掃流砂をハ イドロフォン(パイプ型とプレート型)、浮遊砂 を濁度及び採水により観測を実施している(表-1、

Sediment Transport Observation for Sabo Planning in the Uonogawa River

写真·1)。

観測升(W2.0m×B2.0m×H2.0m)は、掃流砂を捕捉してロードセルにより荷重を測定し、重

図-1 管内河川と観測所位置図

表-1 観測地点と観測項目

			流砂量				
	河川名	水位計	ハイドロフォン		牟日 2日(イ)	濁度計	
			パイプ型	プレート型	観測开		
大野原橋	魚野川	0	0	0	0	0	
清水下流砂防堰堤	登川	0	0			0	
登川水位観測所	登川	0	0			0	
竜光遊砂地下流	芋川	0	0			0	

写真-1 観測升とハイドロフォン (大野原橋)

量から掃流土砂量を推定している(写真-1)。観 測升がすぐに満杯にならないように、観測升の横 断方向幅を0.4mに絞って観測している(写真-1)。

ハイドロフォンは、パイプ型が単管パイプの中 に音響センサー(コンデンサマイク)を入れ、単 管パイプに当たることによる変化をパルス回数と して5分間の積算値を観測している。プレート型 は、パイプ型の単管パイプを鋼板に変えたもので 観測原理はパイプ型と同様である。

2.3 流砂量観測結果

大野原橋での観測結果(2021年3月21日から3 月23日)を示す(図-2)。

降雨観測は大野原橋地点最寄りのAMeDAS (湯沢)のデータを用いた(図・2(a))。なお、(一 財)日本気象協会が公表している雨雲レーダー²⁾ を確認すると3月21日は終日上流域を含めて雨域 に覆われている状況であり、AMeDAS(湯沢) での観測より前に増水しているものの、上流域で の雨量が影響したと考えられ、水位上昇は降雨と 関係があると言える(図-2(a))。

ハイドロフォンによる観測では、パイプ型とプ レート型ともに3月21日6時頃からパルス数の増 加が見られ、水位上昇とともにハイドロフォンで 観測されたパルス数も増加している(図-2(a)、 (b))。一方で、ハイドロフォンで観測されたパル ス数の増加に従い、観測升による土砂捕捉量(重 量)も増加し始め、3月21日9時頃から急激に増 加し、出水による顕著な土砂移動が観測された (図-2(a)、(b)、(c))。出水がピークに到達する前に、 観測升は捕捉土砂で満杯となったことにより、そ の後は一定重量を示している(図-2(a)、(c))。

また、浮遊砂は、一部降雨との関連もあるよう にみられるものの、斜面や渓岸の崩壊又は顕著な 侵食などにより増加することが知られていること から、突発的に観測されることが多く、出水との 関連性について明確なことは言えない結果であっ た(図-2(a)、(d))。

3. 洪水・土砂流出モデルの検討

3.1 洪水・土砂流出モデルの概要

本検討では、魚野川上流域を対象に山野井の研 究成果³⁾を基に、洪水・土砂流出モデルを構築し た。構築したモデルの概要は次のとおりである。 (1) 流域地形モデル 流域を単位河道、単位斜面、斜面要素に分割し 計算する。下流の単位河道では平野部を複断面に 見立てて氾濫を定量評価する。

(2) 斜面での降雨流出モデル

表面流、中間流統合型kinematic wave法を採 用し、計算は斜面要素ごとに行う。

$$\alpha \frac{\partial h_r}{\partial t} + \frac{\partial q_r}{\partial x} = (r - f) \cos \theta \qquad \cdots \cdots \cdots \cdots \cdots (1)$$

$$q_r \begin{cases} k_A h_r \sin \theta & (D_A \ge h_r) \\ k_A D_A \sin \theta + \frac{1}{n_s} \sqrt{\sin \theta} (h_r - D_A)^{\frac{5}{2}} (D_A < h_r) \end{cases} (2)$$

ここで、*h*rは斜面部の水深、*q*rは単位幅流量、 rは降雨量、*f*は単位時間当たりの損失水頭、*D*A

図-2 大野原橋地点での2021年3月21日から3月23日の観 測結果((a)雨量(AMeDAS湯沢観測所)と水位、(b)ハ イドロフォン、(c)観測升による土砂捕捉量、(d)濁度)

は表土層厚、k_Aは飽和透水係数、θは斜面勾配、 n_sは斜面の粗度(等価粗度)である。

(3) 土砂生産、供給モデル

斜面崩壊は土中水分量と限界土中水分量の比で 判定する。

 $R_{st} = \frac{w_t}{\gamma w_{cr}} R_{st} \ge 1$ で崩壊、γは補正係数 ····(3)

ここで、*R_{st}*は斜面崩壊指標、*w_t*は土中水分量、 *w_{cr}*は限界土中水分量、γは斜面崩壊モデルにおけ る補正係数である。

本検討で対象とする出水では、斜面崩壊や土石 流が多数発生する状況ではなかったことが確認さ れていることから、斜面からの土砂供給は行わず、 初期河床の堆積物のみを与える。

(4) 河道での水、土砂輸送モデル

[水の質量保存則]

上流側に単位河道*in1、in2*が流入する単位河道 *i*の水に関する保存則は次式で表される。

$$\frac{\partial h}{\partial t} = \frac{1}{B_c L} (Q_{in1} + Q_{in2} - Q_{out}) + \frac{1}{B_c} q_r \qquad \cdots \cdots (4)$$

ここで、*h*は単位河道の水深、*Q_{in1}、Q_{in2}*は単位 河道*in1、in2*からの流入量、*Q_{out}*は単位河道の流 量、*q_r*は斜面の下流単位おける単位幅流量、*B_c*は 河道幅、Lは河道長である。

[土砂の質量保存則]

河道部の土砂移動は、河床に貯留された土砂の 移動を対象とし、流砂の移動形態として掃流砂と 浮遊砂を考えるものとすると、河床の貯留土砂の 質量保存則は次式で表される。

 $(1-\lambda)\frac{\partial z_b}{\partial t} = \frac{1}{B_c L} \left(Q_{in1} + Q_{in2} - Q_{out} + Q_{sup} \right) \quad \cdots (5)$

ここで、λは河床材料の空隙率、z_bは河床位、 Q_{sup}は単位河道の両岸の単位斜面からの土砂供給 量の和(ここではゼロ)である。

3.2 再現計算

大野原橋地点において、土砂流出が観測された 2021年3月21日から3月23日の出水を対象に再現 計算を行った。

3.2.1 計算条件設定

(1) 降雨・融雪と流出

雨量は、AMeDAS(湯沢)を用いた。大野原 橋地点における流量Q(m³/s)は水位観測結果から、 マニング式により流速を算出し、流積を乗じて流 量Qを算出した。再現計算対象期間中3月15日か

表-2 計算ケースと諸元

	Case1	Case2	Case3
土層厚(m)	0.2	0.4	0.05
飽和透水係数(m/s)	0.005	0.02	0.005
等価粗度(s/m ^{1/3})	0.7	0.7	10
マニングの粗度係数(s/m ^{1/3})	0.03	0.03	0.03

ら28日までの総降雨量と算出した流量を比較し た結果、3月は融雪期であることから融雪量の影 響により流出率が557%となった。本検討では、 出水による土砂移動を評価することを目的とし、 融雪量は観測していないことから水収支を考慮し、 便宜的に降雨量を5.57倍として計算を行った。 (2) 粒度分布

河床の粒度分布は、「信濃川河川整備基本方針 4)」のデータを用いた(図-3)。

(3) 物性値と計算ケース

マニングの粗度係数、等価粗度係数、土層厚、 飽和透水係数等は、既往検討等から一般的に用い られる値を採用し、流量による感度分析を行う目 的で3ケース設定した(表-2)。

3.2.2 再現計算結果

流量および掃流砂量の再現計算結果を示す(図-4(a)、(b))。

流量は上流域の雨量が考慮されていない影響に より、全てのケースで流量の立ち上がりが遅く、 Case2が他のケースと比較してピーク流量の再現 性が良く、減衰部分では、Case1とCase2が再現 できている。水収支の観点から観測期間(3月21 日0:00から3月23日23:00)の総水量は、観測を1 としてそれぞれのケースを比較すると、Case1は 0.69、Case2は1.20、Case3は0.92と全体的には Case3が他のケースと比較して再現性が良い結果 となった(図-4(a))。 掃流砂量は掃流力見合いで算出されることから、 流量に追随した計算結果となり、全てのケースで 前半の再現性は十分でなかったものの、後半部分 はCase1で掃流砂量波形が一部再現されていた (図-4(b))。但し、観測結果から推定された掃流 砂量と再現計算による掃流砂量とでは、1オー ダーの違いがあった。これは、ハイドロフォンは 河床面を転動して移動する掃流砂が単管又はプ レートに当たることで観測しており、掃流砂の挙 動によっては単管やプレートに当たらず計測され ないものや音響センサーによる観測がある一定以 上になると飽和状態になり、観測されない場合が ある。このため、観測値は実際の掃流砂量より小 さく評価され、計算は流量に応じた掃流力で算出 されるので、計算値の方が大きくなる傾向がある。

4. まとめ

本検討では、数値計算モデルにより再現計算を 試み、再現性は十分ではなかったものの、観測結 果に基づき土砂移動現象の検討を行うことができ るようになったことには大きな意味があると考え ている。これまでは、出水前後の河床変動測量結 果による再現を主として検討がなされており、言 い換えれば入口(出水前)と出口(出水後)の結 果のみで途中過程は計測等がないことから、ブ ラックボックスとして取り扱ってきた。本検討で は一部限られた条件で設定して既存の数値計算モ デルで再現計算を試みたものの、更に、観測結果 を基に数値計算モデルを組み立て、出水中の現象 を評価することにより、土砂災害防止・軽減に対 して、より確実な対策を計画することが可能とな る。今後も引き続き、観測を継続するともに、出 水中の土砂移動現象を適切に評価できるように検 討を継続していく予定である。

図-4 大野原橋地点での2021年3月21日から3月23日の再 現計算結果

((a)雨量(AMeDAS(湯沢))と流量、(b)ハイドロフォン)

参考文献

 建設省河川局砂防部砂防課:「流砂系の総合的な土 砂管理に向けて」(総合土砂管理小委員会報告).
2008.7
(URL:https://www.mlit.go.jp/river/shinngikai blo

g/past_shinngikai/shinngikai/shingi/980730.html)

- 2) 日本気象協会:過去の天気(雨雲レーダー) (URL:https://tenki.jp/past/radar/)
- 3) 山野井 一輝:土砂生産・土砂供給過程を考慮した 土砂流出モデルの開発とその応用に関する研究、京 都大学博士論文、2017年
- 国土交通省河川局:信濃川水系河川整備基本方針、 2008.6

(URL:https://www.mlit.go.jp/river/basic_info/jigy o_keikaku/gaiyou/seibi/shinanogawa_index.html)

国土交通省北陸地方整備 局湯沢砂防事務所 事業 対策官、博士(工学)、技 術士(建設部門) Dr. ISHIDA Tetsuya

松本直樹

国土交通省北陸地方整備 局湯沢砂防事務所 事務 所長 MATSUMOTO Naoki