落橋防止構造等の取付部に用いるアンカーボルトの 抵抗特性に関する実験的検討

廣江亜紀子・菅原達也・中尾尚史・大住道生

1. はじめに

落橋防止構造は、上部構造と下部構造または上 部構造同士をケーブル等で接続するなどして、橋 の上部構造が下部構造から容易には落下しないよ うにするための構造である。道路橋の性能には、 耐荷性能、耐久性能の他に、橋の使用目的との適 合性の観点から必要な性能があり1)、落橋防止構 造はこれを満足するための構造である。落橋防止 構造は取付部を含めて作用する水平力に対して弾 性域に留まるようにすることが現行の道路橋示方 書Ⅴ編ǜに規定されている。弾性域に留めるのは、 落橋防止構造全体として作用力に抵抗するだけで なく、変形が大きくならないようにするためであ るが、取付部の具体的な照査方法は定められてい ない。過去の地震においても鉄筋コンクリート (以下「RC」という。)橋台の前面に取り付けら れた落橋防止構造の取付部のアンカーボルトが引 き抜ける被害が生じている(写真-1)。

写真-1 縁端付近に取り付けられた落橋防止構造の 取付部の損傷(アンカーの引き抜け) ³⁾

そこで、RC橋台の前面等に取り付ける落橋防 止構造の取付部に用いるあと施工のアンカーボル トに対する照査方法を提案するため、RCブロッ クに埋め込んだアンカーボルトの引抜き実験を 行った⁴⁾⁻⁵⁾。

2. 落橋防止構造の取付部に想定される破壊

RC橋台の前面等に落橋防止構造をあと施工の アンカーボルトで取り付ける場合に想定される破 壊モードを表・1に示す。取付部全体としての破壊

Experimental Study on Resistance Characteristics of Anchor Bars for the Attachment of Unseating Prevention Structures

表-1 想定される破壊モード

アンカーボルト	アンカーボルトに引張力が作用した
の破断	ときに、アンカーボルト自体の耐力
	を超過して破断
コーン破壊	アンカーボルトに引張力が作用した
	ときに、母材であるコンクリートが
	円錐状(コーン状)に破壊
付着破壊	アンカーボルトに引張力が作用した
	ときに、母材であるコンクリートと
	接着剤の界面または接着剤とアン
	カーボルトの異面で破壊

図-1 文献6)・7)のコーン破壊の考え方 (左:道示式、右:土木学会式)

は、これらの破壊モードのうち最初に発生したも ので決まると考えられる。道路橋示方書Ⅲ編6) (以下「道示Ⅲ」という。)において直径25mm~ 51mmの先付けのアンカーボルトを対象とした評 価式が、土木学会のコンクリートのあと施工アン カー工法の設計・施工指針(案)のでは直径 25mmまでのあと施工アンカーを対象とした評価 式がそれぞれ提案されている(以下、それぞれの 文献によるコーン破壊・付着破壊の評価式を道示 式、土木学会式と称する)。これらの文献におい てコーン破壊の形状はそれぞれ異なる想定がされ ており、道示式ではコンクリート表面が深さ2D (D:アンカーボルトの直径)のコーン状に破壊 することを、土木学会式では埋め込んだアンカー ボルトの先端(以下「埋込長端部」という。)か らコーン状に破壊が発生することを指す(図-1)。

3. 実験概要

3.1 実験計画の検討

表・1の各破壊モードに対して、落橋防止構造の 取付部がどのような状態であれば作用力に対して 弾性域に留まると言えるかを確認することが必要

となる。

また、落橋防止構造の取付部には、複数本のア ンカーボルトが密に配置されることが多いが、そ のような場合は、隣り合うアンカーボルト同士で 抵抗範囲が重複することによる耐力の低減(群効 果)を考慮する必要がある。例えば、図・2のよう に2本のアンカーボルトを接近させて配置した場 合、隣り合うアンカーボルト同士で抵抗範囲が重 複するため、土木学会式で想定するような埋込長 端部からのコーン破壊に抵抗する母材コンクリー トの範囲は1本のときと2本のときの差がわずか になると考えられる。そのため、アンカーボルト を2本配置したとしても2倍のコーン破壊に対す る抵抗力を見込むことはできない。アンカーボル トを密に配置した場合は群効果が与える影響を、 コーン破壊の形状と合わせて検討する必要がある。

これらを踏まえて、あと施工のアンカーボルト を対象に、群効果の影響を確認するためにアン カーボルトの本数をパラメータとし、引き抜き方 向に載荷したときの破壊モードの確認と作用力に 対して弾性域と考えられる状態の検討を行うこと とした。

3.2 実験ケース

引抜き実験の実験ケースを表・2に示す。実験の 前提条件として、実際の落橋防止構造の設計で用 いられる直径32mm(D32と表記)の異形棒鋼を、 アンカーボルトとしてRCブロックに埋込長15D⁸⁾ で取付けるものとした。また、緑端距離は土木学 会式の想定するコーン破壊の抵抗範囲を確保した 縁端距離15D(480mm)以上と、RC構造の抵抗 機構を考慮して橋台等の最外縁鉄筋より内側に設 置することを想定した200mmの2ケースとした。 異形棒鋼を複数本配置するときの間隔は道示Ⅲを 参考に異形棒鋼の直径の3倍(異形棒鋼中心間の 表-2 引抜き実験の実験ケース

	鋼材	鉄筋	本数	異形棒鋼	埋込	縁端
	記号	径		間の距離	長	距離
Case-1	SD345	D32	1本	-	15D	480mm
Case-2	SD490	D32	1本	-	15D	200mm
Case-3	SD490	D32	3本	96mm(3D)	15D	200mm
Case-4	SD490	D32	4本	96mm(3D)	15D	200mm

写真-2 引抜き実験装置 (Case-2)

距離96mm)とした。詳細は後述するが、SD345 を用いたCase-1では異形棒鋼の破断により終局 を迎えた。しかし、実施工において想定される密 な配置で生じる群効果や緑端距離の影響を受けや すい付着破壊やコーン破壊について、抵抗特性を 確認する必要があるため、Case-2~4ではSD490 を用いることとした。

RCブロックの設計基準強度は24N/mm²とし、 材齢27日の圧縮強度は30N/mm²であった。RCブ ロックの配筋はRC橋台を想定して行った。

異形棒鋼の設置は文献7)を参考に、RCブロッ クにφ40mmの削孔を行い、十分に孔内を清掃し た後、孔内に異形棒鋼を設置してエポキシ樹脂で 定着した。

3.3 載荷方法

実験装置は、ジャッキを使って異形棒鋼を引き 抜く構造である。Case-1は異形棒鋼をジャッキ1 台で、Case-2~4はカップラーを用いてRCブロッ クに固定した異形棒鋼を載荷治具と接続して ジャッキ2台の荷重が均等になるように調整しな がら、一方向に漸増載荷を行った。例として Case-2に対する実験装置を写真-2に示す。異形 棒鋼の頂部にターゲットを設置し、実験中のその 点の変位を計測した。

4. 実験結果

4.1 ひび割れ形状

引抜き実験の結果、Case-1は異形棒鋼の破断、 Case-2はジャッキのストローク限界、Case-4は 荷重の低下を確認し、載荷を終了した。Case-3

土木技術資料 64-11(2022)

図·3 荷重·変位関係

は、ひび割れ発生後にひび割れの増加を確認した 後、破壊に至る前に載荷を停止して除荷した。

実験後のひび割れ状況を写真-3~7に示す。 Case-1は写真-3のように、異形棒鋼を中心とし た円形のひび割れが発生した。Case-2は異形棒 鋼を中心に十字にひび割れが発生(写真-4の白線 部)したが、その後、コンクリート表面に異形棒 鋼を中心とした小規模な円形のひび割れ(写真-4 の①)が発生し、更に載荷を続けるとその外側に もひび割れ(写真-4の②)が生じた。Case-1、2 ともに実験後にはつったところ、異形棒鋼を中心 としてコンクリート表面がコーン状にひび割れて いることが確認された。

一方、Case-3、4では異形棒鋼を中心とした円 形のひび割れは確認されず(写真-5、6)、異形棒 鋼の埋込長端部付近においてコーン状のひび割れ が発生した(写真-7の黄色線部)。さらに、実験 後Case-3、4の供試体を切断して内部を確認した ところ、写真-8のように、埋込長端部を中心に コーン状のひび割れが進展していたことが確認で きた。

4.2 荷重-変位関係

荷重と異形棒鋼頂部における変位の関係とひび 割れ発生のタイミングを図-3に示す。図-3には参 考として道示式、土木学会式により材料実測値を 用いて算出したコーン破壊耐力と付着破壊耐力も 併せて図示している。なお、道示式と土木学会式 の適用条件は本実験と一致しないが、ここではそ のまま準用した。

Case-1はひび割れ発生の前、Case-2は初期ひ び割れが発生した後に荷重が一定になったが、そ のときの荷重が材料試験結果から導いた異形棒鋼 の降伏耐力(SD345は306kN、SD490は415kN) とよく一致した。埋込長端部からのコーン破壊や 付着破壊の兆候が見られなかったことから、異形 棒鋼が降伏したものと考えられ、それまでは取付 部全体として弾性域であったと考えられる。降伏 時の荷重は道示式によるコーン破壊、付着破壊の 耐力の推定値を大きく上回った。

Case-3と4は、異形棒鋼をカップラーで接続し ているため、載荷初期の荷重・変位関係はカップ ラーのかみ合わせにより挙動が安定していないが、 その影響を除外すれば、荷重変位関係はコーン状 のひび割れが発生するまでは比例関係にあると推 察される。Case-3で除荷後の残留変位はわずか であったことと合わせ、コーン状のひび割れ発生 までは取付部全体として弾性域と考えられる。 コーン状ひび割れ発生時点の荷重は、道示式、土 木学会式による推定値を上回り、土木学会式によ り近い結果となった。

道示式は先付けアンカーを対象としていること、 コンクリート表面のコーン破壊を想定しており、 Case-1と2のひび割れと形状は類似するがCase-3 と4で確認されたひび割れ形状とは異なることが、 推定値と実験値が大きく乖離した原因と考えられ る。一方、Case-3と4のひび割れ形状は土木学会 式で想定するコーン破壊の形状と同様であったた め、コーン破壊についての実験値と推定値が道示 式と比べれば近い値となったと考えられる。

5. まとめ

本実験の結果から、異形棒鋼が1本の場合のひ び割れの形状は道示式の想定するコーン破壊の形 状と類似したが、複数本の場合は埋込長端部から のコーン破壊のモードを示した。

また、異形棒鋼が複数本の場合、コーン状のひ び割れ発生までは荷重と変位が比例関係にあり、 残留変位もわずかであったことから、取付部全体

として弾性域と考えられる。なお、異形棒鋼が複 数本のときコーン状のひび割れ発生荷重は道示式、 土木学会式による推定値を上回り、土木学会式に より近い結果となった。

ただし、上記の結果がすべての落橋防止構造の 取付部に適用できるわけではなく、本実験とは異 なる条件の場合は、弾性域と考えられる範囲や破 壊モードが異なる可能性がある。今後は本実験で 得られた知見をもとに落橋防止構造の取付部に用 いるあと施工のアンカーボルトに対する照査方法 を検討していく。

参考文献

- 1) (社)日本道路協会:道路橋示方書·同解説 I 共通編、 2017.
- 2) (社)日本道路協会:道路橋示方書·同解說V耐震設 計編、2017.
- 3) 国土交通省国土技術政策総合研究所、独立行政法人 土木研究所:平成23年(2011年)東北地方太平洋沖地 震による道路橋等の被害調査報告、国総研資料814 号、2014
- 4) 廣江亜紀子、中尾尚史、大住道生:落橋防止構造 および横変位拘束構造の取付部の付着性能に関す る実験的検討、第24回橋梁等の耐震設計シンポジ ウム講演論文集、pp.27~32、2021
- 5) 廣江亜紀子、菅原達也、中尾尚史、大住道生:落 橋防止構造の取付部を想定したアンカーボルトの 群効果と縁端距離の影響の実験的検討、第25回橋 梁等の耐震設計シンポジウム講演論文集、pp.149 $\sim 156, 2022$
- 6) (社)日本道路協会:道路橋示方書・同解説Ⅲ編、コ ンクリート橋・コンクリート部材編、2017.
- 7) 土木学会コンクリート委員会あと施工アンカー小 委員会編:コンクリートのあと施工アンカー工法 の設計・施工指針 (案)、コンクリートライブラ リー141号、2014
- 8) 東日本高速道路(株)、中日本高速道路(株)、西日本 高速道路(株):設計要領第二集橋梁保全編、2019

土木研究所 橋梁構造研究 グループ 主任研究員 HIROE Akiko

土木研究所 橋梁構造研究 グループ 交流研究員 SUGAWARA Tatsuya

中尾尚史

研究当時 土木研究所 橋梁 構造研究グループ専門研究 員、現 国立舞鶴工業高等 専門学校建設システム工学 科 講師、博士(工学) Dr. NAKAO Hisashi

大住道生

土木研究所 橋梁構造研究 グループ 上席研究員、博 十 (丁学) Dr. OHSUMI Michio