現地レポート:土砂災害対策における新たな展開

流砂量観測装置を用いたアラートシステム構築への取組み

1. はじめに

2011年9月台風第12号による豪雨では、多数の 斜面崩壊、崩壊に伴う河道閉塞が生じた。崩壊斜 面および河道閉塞からの土砂流出を監視するため に、河道閉塞下流にハイドロフォン等を設置し、 流砂水文状況の観測監視を実施中である1)。土砂 移動監視における流砂量観測研究は、例えば、天 竜川水系与田切川において、上流域で発生した土 石流の有無により、下流域で観測される掃流砂量 に違いが生じた事例2)があり、上流域の異常な土 砂移動を流砂量観測によって検知できることが報 告されている。また、桜井ら3は、鬼怒川水系大 谷川での土石流発生時に、流量と掃流砂量の関係 が左回りのヒステリシスループを描くことに着目 し、ヒステリシス解析に基づいて、警戒避難情報 等を提供するアラートシステムを提案している。 本稿では、紀伊山系砂防事務所管内(以下「管内」 という。)における流砂量観測結果を解析し、桜 井ら³⁾が用いたヒステリシスに着目した異常な 土砂移動の検出方法の適用性および流砂量観測に 基づくアラートシステム構築に向けた今後の課題 について報告する。

2. 対象流域及び観測解析手法

2.1 流砂量観測対象流域

管内では、熊野川水系の川原樋川、栗平川、神 納川、三越川、高田川、及び和歌山県を流れる日 置川水系の熊野川を対象に流砂量観測を実施して いる(図-1)。川原樋川、栗平川、三越川、熊野 川の4箇所の上流域には2011年9月台風第12号時 の豪雨により生じた深層崩壊地がある。各箇所に はハイドロフォン、水位計、濁度計等の流砂量観 測機器を設置している(写真-1)。本研究では、 上記観測箇所の内、比較的長期間にわたり、大き な欠損が無く、良好なデータが取得できている川 原樋川、三越川、熊野川の3流域のデータを対象

Study on an Alert System Using Observation of Bed-Load Sediment Transport

北本 楽・小杉 恵・木下篤彦

とした。なお、川原樋川は、上流の池津川合流付 近と下流の赤谷川合流付近の2箇所で観測を実施 している。対象とした4観測箇所の流域面積、河 床材料調査による粒径と、ハイドロフォンの観測 期間を表・1に示す。

2.2 掃流砂量の算出

ハイドロフォンは、金属板に衝突する砂礫が生 じた衝突音をマイクで収集して電圧に変換するこ とで、間接的に掃流砂量を計測する機器である。 本研究では、パルス法と音圧法の2手法のうち、

図-1 流砂観測箇所の位置図

写真-1 日置川流域熊野川の流砂観測施設

表・1 流砂観測所の概要

観測地点名	***	流域面積	粒径			
	ホポイ		d10	d60	d90	解析対象期間
	<u> </u>	(km ²)	(mm)	(mm)	(mm)	
^{いや} 熊野地区	日置川 熊野 (いや) 川	5.4	1	30	80	2018年3月 ~2018年8月月 2019年2月 ~2021年9月
川原樋川上流 (池津川合流)	熊野 (くまの) 川 川原樋川	130.9	2	25	70	2018年9月 ~2021年9月
川原樋川下流 (赤谷川合流)	熊野 (くまの) 川 川原樋川	150.8	4	40	95	2018年3月 ~2021年 9 月
三越川流域	熊野 (くまの) 川 三越川	23.3	0.7	40	70	2018年9月 ~2021年9月

CCTV 8/23 10:00

CCTV 8/23 18:00

CCTV 8/24 12:00

図-2 2018年台風第20号時の熊野川におけるカメラ画像

音圧法を用いることとした。掃流砂量変換は国土 技術政策総合研究所から掃流砂量算出プログラム を借用して算出した。

2.3 水位と掃流砂量の関係分析

流砂量観測結果を、横軸に水位、縦軸に掃流砂 量の関係を示すことで、平常時には観察されない 左回りのヒステリシスループが観測されたのか確 認した。平常時出水では、増水時(出水前半)と 減水時(出水後半)で水位に対する掃流砂量の関 係は正の相関または直線的である場合が多い。一 方で、異常な土砂移動時には、水位が低下する減 水時においても、掃流砂量が多く、水位・掃流砂 量の関係が左回りのヒステリシスとなる場合があ り、これを左回りヒステリシスループと表記する。 2.4 異常な土砂移動の検出手法の検討

平常時の出水の際の水位・掃流砂量の関係と異 常な土砂移動の際の水位・掃流砂量の関係との判 別は、芦田らによる式⁴⁾(以下「A.T.M式」とい う。)やMeyer-Peter and Müllerの式⁵⁾(以下 「M.P.M式」という。)を利用した。掃流砂量公式 は、平均粒径を任意に変化させることで、平常時 の水位・掃流砂量の関係を複数パターン推定でき る。掃流砂量公式による水位・掃流砂量の関係 (以下「推定曲線」という。)を、流砂量観測結果 に重ねて、推定曲線から逸脱するような異常な土 砂移動、つまり、左回りヒステリシスループの分 離を試行した。また、粒径を変化させて、複数の 推定曲線を設定することで、どの粒径を設定した 際に、推定曲線が左回りヒステリシスループの分 離に適する閾値線となるか確認した。

3. 解析結果

3.1 左回りヒステリシスループの確認事例

2018年8月の台風第20号による総降雨量約600 mmの大規模降雨により日置川水系熊野川の流砂 観測箇所では、ハイドロフォンが被災を受ける土 砂流(図-2)が生じた。この出水時の雨量、水位、 掃流砂量を図-3に示す。また、この出水イベント 中に水位・掃流砂量の関係から左回りヒステリシ スループが確認された(図-4)。なお、表-1に示 すすべての観測期間中で左回りヒステリシスルー プの事例が確認されたのは、熊野川での台風第 20号による出水イベント中のみであった。

3.2 異常な土砂移動の検出閾値線設定

熊野川で観測された水位・掃流砂量の関係およ び、A.T.M式およびM.P.M式の各掃流砂量公式の 平均粒径を変化させた複数パターンの推定曲線を 図-5に示す。なお、推定曲線のうち、各粒径の限 界掃流力となる水位以下は表示していない。観測 期間のうち、2018年8月、2019年8月、2020年7 月において、特に水位が上昇する降雨イベントが 生じた。2018年8月の土砂流以外の出水では、水 位・掃流砂量の関係は正の相関を示すような平常 時出水であった。続いて、平常時出水における水

測箇所の雨量、河川水位、掃流砂量

図-4 2018年台風第20号時の熊野川流砂観測箇所に おける水位・掃流砂量の左回りヒステリシス ループ

図-5 熊野川流砂観測箇所における掃流砂観測結 果と推定曲線

位・掃流砂量の関係と異常な土砂移動を分離する ために、平常時の水位・掃流砂量の関係を包絡し、 かつ、左回りヒステリシスループとの閾値線にな るような推定曲線を求めた。図-5に示した複数パ ターンの推定曲線のうち、平均粒径d85を適用し たA.T.M式が平常時の水位・掃流砂量の関係と異 常な土砂移動による左回りヒステリシスループを 分離するのに最適であることがわかった。M.P.M 式による推定曲線は、イベント発生時の上限付近 に位置し、その他の観測結果と離れていた。なお、 この時の平均粒径d85はあらかじめ流砂量観測箇 所近傍で行った粒度分布調査結果に基づき設定し ている。また、異常な土砂移動および明瞭な左回 りヒステリシスループが確認できなかった熊野川 以外の流砂観測箇所について、水位・掃流砂量の 関係と推定曲線を図-6.1~6.3に示す。熊野川の 観測箇所以外の三越川、川原樋川上流、川原樋川 下流の3箇所の流砂観測箇所では、共通して平均

粒径d10のA.T.M式による推定曲線が、水位・掃流 砂量の関係を包絡していた。異常な土砂移動が発 生していない観測箇所においても、掃流砂量公式 を用いた推定曲線を閾値線として活用し、異常な 土砂移動と平常時の出水を分離できる可能性があ る。

4. 考察

4.1 流砂水文観測データを用いた土砂移動検知の 可能性

本研究は、桜井ら³⁾を先行研究として参照し、 管内の流砂観測データにおける掃流砂量公式を用 いた異常な土砂移動の検出を試みた。本研究にお いては、左回りヒステリシスループを確認したの は熊野川での土砂流、1事例だけであったが、掃 流砂量公式による推定曲線を用いることで、平常 時とは違う異常な土砂移動として、土砂流等を検 知できることが示唆された。熊野川以外の流砂観 測箇所では異常な土砂移動が観測されていないた め、引き続き、流砂観測を継続し、他流域の流砂 観測結果と掃流砂量公式を用いた推定曲線とを比 較することで、閾値線の適用性と課題が確認でき ると考える。

4.2 流砂観測に基づくアラートシステム構築への 課題

本研究で用いた音圧式データの掃流砂量はデー タ容量が大きいことから、テレメータ化ができて おらず、作業員が定期的に現地にてデータを回収 して、内業で解析をしている。上流域で検知した 異常な土砂移動をリアルタイムで解析し、下流域 の警戒避難に活用するためには、音圧式データの 軽量化や、流砂観測箇所現地でデータを解析する 手段を検討する必要がある。また、異常な土砂移 動の検知には掃流砂量公式を用いた閾値線の超過 を判定する仕組みと合わせて、ヒステリシスルー プが左回りしたタイミングを判定する仕組みが必 要となる。

5. おわりに

本研究では、異常な土砂移動時に水位・掃流砂 量の関係において左回りヒステリシスループが生 じることに着目し、掃流砂量公式を用いて、異常 な土砂移動を判別する手法について検討した。今 後は、流砂量観測結果を蓄積しつつ、土砂流出と

川原樋川上流流砂観測箇所における掃流砂 図-6.1 観測結果と推定曲線

図-6.2 川原樋川下流流砂観測箇所における掃流砂 観測結果と推定曲線

ヒステリシスの関係性、ヒステリシス発生の要因 についても検討が必要である。管内の流砂量観測 結果のみならず、全国の流砂観測データを用いた 解析や閾値線設定の検討が有効だと考えられる。

図-6.3 三越川流砂観測箇所における掃流砂観測結果 と推定曲線

参考文献

- 1) 井元成治、岡野和行、吉安征香、井之本信、小竹 利明、山田拓、柴田俊、木下篤彦:熊野川流域に おける流砂水文観測データに基づく土砂移動状況 の把握(その2)、2020年度砂防学会研究発表会概 要集、pp.719~720、2020
- Uchida, T., Sakurai, W., Iuchi, T., Izumiyama, H., 2)Borgatti, L., Marcato, G. and Pasuto, A. : Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring, Geomorphology, Vol. 306, 1, pp. 198-209, 2018
- 桜井亘、内田太郎、泉山寛明、井内拓馬、杉山実、 3)松田悟、伊藤隆郭:流砂水文観測から得られた異 常な土砂生産時の掃流砂流出特性と観測結果の山 地流域監視への適用について、砂防学会誌、 Vol.72, No.2, pp.25~31, 2019
- 4) 芦田和男、高橋保、水山高久:山地河川の掃流砂 量に関する研究、砂防学会誌(新砂防)、Vol.30、 No.4, pp.9~17, 1978
- Meyer-Peter and Müller : : Formulas for bed-load 5)transport, Proc. 2nd IAHR Meeting, Stockholm, pp. 39-64, 1948

国土交通省近畿地方整備局大規模 土砂災害対策技術センター、(併) 技官 紀伊山系砂防事務所 KITAMOTO Gaku

国土交通省近畿地方整備局大規模 土砂災害対策技術センター、(併) 紀伊山系砂防事務所 調查課長 **KOSUGI** Megumi

木下篤彦

研究当時 国土交通省国土技術政 策総合研究所土砂災害研究部砂防 研究室(近畿地方整備局大規模土 砂災害対策技術センター) 主任研 究官、現 土木研究所土砂管理研 究グループ火山・土石流チ 主任研究員、博士 (農学) - 4 Dr. KINOSHITA Atsuhiko