全国規模の砂浜モニタリングを実現するための 衛星画像解析技術の開発

渡邊国広・加藤史訓

1. はじめに

気候変動が海岸に及ぼす影響の1つとして、海 面水位の上昇による砂浜の消失が懸念されている。 今後顕在化する気候変動の影響を早期に把握して 対策を講じるためにも、砂浜の状態を継続的にモ ニタリングすることが欠かせない。本稿では、全 国規模の砂浜モニタリングで活用する調査手法と して筆者らが取組んでいる、衛星画像からの汀線 抽出手法と代表海岸における試行結果を紹介する。

2. 我が国の砂浜をとりまく現状

2.1 天然の消波施設としての砂浜

砂浜は砕波により波浪のエネルギーを低減させ る効果を有するため、海岸沿いの地域を高波から 守る、いわば天然の消波施設として重要な役割を 果たしている。令和元年には、石川県の石川海岸 の砂浜部分が海岸法にもとづく海岸保全施設とし て全国で初めて指定されたところである。

2.2 砂浜におけるモニタリングの現状

砂浜が消波施設としての機能を発揮できる状態 を保つには、波打ち際(以下「汀線」という。) から堤防までの浜幅を必要量以上に保つことが重 要である。海岸侵食による汀線後退は、砂浜が有 する消波機能に加えて堤防の安全性を低下させる。

一方で、国土交通省水管理・国土保全局所管の 砂浜海岸約 3,250km のうち、現地測量によるモ ニタリングが実施されているのは約 340km に限 られる¹⁾。これらの多くは侵食対策などの事業を 実施中の海岸であり、侵食が顕在化していない海 岸では定期的な測量が実施されていないため、衛 星画像等を活用することで補完する必要がある。

2.3 衛星画像等を活用したモニタリング

砂浜のモニタリング手法として、従来から航空 写真を用いた汀線の判読は実施されており、衛星 画像の判読もほぼ同じ作業であるが、従来の汀線 の動態を熟知した者による目視判読により全国規 模で実施するのは現実的ではない。また、最近で は衛星画像のオープンデータ化によって活用可能 な衛星画像の量が増えつつあり、航空写真では不 可能であった高頻度での観測も可能となってきた。 急速に増加する衛星画像を有効に活用するために も、汀線抽出の自動化は、重要な課題である。

3. 衛星画像からの汀線抽出手法

3.1 画像解析による汀線抽出の手順

汀線抽出の基本的な手順は次のとおりである。 まず、対象海岸を撮影範囲に含む画像を選定する。 次に同時に観測された2種類のバンドのデータを 組合せてグレースケール画像を作成したうえで、 海と陸に分けた2値画像を作成し、境界線を抽出 する。最後に撮影時の潮位を踏まえて汀線位置の 潮位補正をおこなう。以下に詳細を説明する。

3.2 対象海岸と画像の選定

本研究では、湘南海岸(神奈川県)、下新川海 岸(富山県)、富士海岸(静岡県)、宮崎海岸(宮 崎県)の4海岸を対象とした。これらのうち下新 川海岸と富士海岸には礫浜が含まれる。

2016年に欧州宇宙機関が運用する宇宙観測光 学衛星Sentinel-2によって撮影された光学衛星画 像の中から、上記の各海岸の全長が撮影範囲に含 まれる全てのシーンの分解能10mのマルチスペク トル画像(Level-1C)を計85シーン使用した。

3.3 雲による観測阻害への対処

光学衛星は可視光に近い波長のセンサーを用い るため、海岸が雲によって遮られていない画像の 選定に労力を要する。本研究では衛星画像にメタ データとして付与されている雲量データと抽出成 果の関係を明らかにするとともに、画像合成によ る雲の除去方法も試行した(図-1)。

3.4 海と陸の境界を明瞭にするための処理

光学衛星による観測結果のうち、緑と近赤外の 2波長の反射強度から各画素におけるNDWI指数

Development of a Methods for Extracting Shorelines from Satellite Imagery

図-1 画像合成による雲の除去方法

図-2 NDWI画像の作成

(Normalized Difference Water Index)を求め、 濃淡値として格納したNDWI画像を作成した(図 -2)。NDWI指数は、水が近赤外波長を吸収しや すいという特性を利用し、水に吸収されにくい緑 色の波長との反射強度の差をとることで、水域と 陸域の違いを明瞭にするものである。

3.5 NDWI画像からの汀線抽出

上記の方法で作成されたNDWI画像から汀線を 抽出する方法として次の2通りを試行した。最後

表-1 深層学習に用いたデータセットの)内訳
---------------------	-----

海岸名	衛星画像	学習用	評価用
	枚数	データセット数	データセット数
湘南	23	10,850	2,680
下新川	10	4,648	729
富士	11	11,165	2,904
宮崎	13	15,367	3,027
合計	57	42,030	9,340

に衛星画像の撮影時刻の近傍における潮位観測結 果と各海岸の前浜勾配をもとに海水面がT.P.=0m とした場合の位置に汀線位置を補正した。

(1) 手法1:既往のエッジ抽出による方法

代表的なエッジ抽出手法であるCanny法と大津 のアルゴリズムを用いて画像全体を2値化し²⁾、 最も海側に位置する境界を抽出して汀線とした。 最初にCanny法で抽出しただけでは、海岸以外の 場所にも多数の境界が抽出されるため、汀線に該 当するものを絞り込んでいくためにバッファ領域 の作成や平滑化などの処理を工夫した(図-3)。 (2) 手法2:深層学習を用いた方法

AIを活用してNDWI画像から陸と海に領域分割した二値画像を作成し、最も海側の境界を汀線として抽出した。AIのモデルには、画像内の領域分割で活用例が多い5段のU-Netを使用した。 変数設定等の詳細は渡邊ら³⁾を参照されたい。

AIの学習に用いるデータセットには、各衛星 画像から目視で判読した汀線位置を用いた。海岸 を学習用区間と評価用区間に分け、それぞれの区 間から表-1のとおりデータセットを作成した。

図-3 Canny法と大津のアルゴリズムを用いた汀線抽出

図-4 手法による抽出結果の違い 上:離岸堤、下:砕波帯と海岸林がそれぞれ誤抽出

4. 汀線抽出結果と各手法の課題

4.1 汀線抽出結果

(1) 抽出結果の特徴

手法1では離岸堤や砕波帯の沖側境界、背後の 海岸林の前縁が誤抽出されることが多かったのに 対して、手法2ではこれらは改善された(図・4)。 (2) 雲量と抽出成功率の関係

沿岸方向に約50m間隔で計1,365本の評価線を 設定し、各シーンに含まれる評価線数を分母、抽 出された汀線と交わる評価線数を分子として求め た割合を抽出成功率と定義した。最終的な抽出結 果としては後述する抽出精度が重要であるが、高 精度でも適用可能な海岸が限られる手法は全国モ ニタリングには適さないことから指標として設定 した。シーンの雲量が20%未満の場合には、いず れの手法も100%近い抽出成功率を示した(図-5)。 雲量が40%以上では両手法とも抽出成功率が低下 し、手法1は低下が顕著であった。

画像合成による雲除去を行った画像(以下、合 成画像)からの抽出成功率は、いずれの手法及び 海岸でも95%を超えていた(表-2)。

(3) 雲量と抽出精度の関係

自動抽出と測量の汀線位置の差を誤差とし、各 評価線上で計測された誤差の総和を、汀線抽出で きた評価線数で割った値を誤差平均と定義した。

図-5 手法による抽出成功率の違い(棒は中央値、 上下バーはそれぞれ、75、25パーセンタイル値)

図・6 雲量と抽出誤差の関係(湘南海岸) 各プロットはシーン毎に算定した結果。合成画像に ついては雲量を定義できないため、破線で示した。

各シーンに含まれる雲量が多くなるに従って誤 差が増大する傾向は概ね両手法で一致した。しか し、同じ海岸でもシーンによるばらつきが大きく、 湘南海岸に手法1を適用した例では、雲量が10% 未満のシーンであっても誤差平均が100m近くな るものもあった(図・6)。また、各海岸における 誤差平均の最低値はいずれの海岸でも手法2の方 が低く、湘南海岸で6.5±6.1m(平均値±標準偏 差)、下新川海岸で11.9±1.0mであった(表・3)。

(4) 合成画像からの抽出精度

合成画像からの誤差平均は、シーン毎に汀線抽 出した結果に比べて小さかった(図-6)。いずれ

表-2 合成画像からの汀線抽出成功率 (括弧内は対象とした評価線の数)

_				
	海岸名	手法1 (%)	手法2 (%)	
	湘南	97.8 (279)	95.3 (43)	
	下新川	98.4 (191)	100(45)	
	富士	99.1 (469)	100 (94)	
	宮崎	98.2(385)	100(58)	
-				

海岸名	手法1 (m)	手法2 (m)
湘南	21.3 ± 30.7 (n = 266)	6.5 ± 6.1 (n = 42)
下新川	26.1 ± 32.5 (n = 103)	11.9 ± 1.0 (n = 44)
富士	22.8 ± 20.3 (n = 466)	9.4 ± 5.5 (n = 94)
宮崎	56.3 ± 29.1 (n = 369)	10.1 ± 9.6 (n = 57)

の海岸でも手法2の方が高精度で、湘南海岸で8.5 ±6.0m(平均値±標準偏差、n=41)、下新川海岸 でも12.3±1.0m(n=45)であった(図-7)。

同じ海岸を対象に衛星SAR画像から汀線を抽 出した既往研究4)と比較すると、下新川海岸を除 く3海岸で衛星SAR画像からの抽出よりも誤差が 小さく、SAR画像では抽出が難しかった細砂の 湘南海岸や宮崎海岸でも下新川海岸や富士海岸の ような礫海岸と同等の精度が得られた(図-7)。

4.2 汀線抽出手法の課題

手法1は画像の領域分割手法としては汎用性が 高い手法であるが、離岸堤や海岸林などの海岸特 有の誤判定要素についての学習プロセスが無い。 抽出範囲が海岸内に限定されるようにする、二値 化の閾値を改良するなどの工夫が必要である。

手法2による抽出結果は成功率、精度ともに良 好であったが、学習データが無い海岸における精 度も確認するとともに、学習データのバリエー ションを増やしていく作業が必要となる。

4.3 雲への対処方法の課題

汀線の抽出成功率及び誤差は画像に含まれる雲 量に依存していたものの、雲量が低くても抽出精 度が低いシーンもあった。これは、衛星画像の シーン全体に対する雲量が画像のメタデータとし て提供されたため、値が小さくても、汀線付近に 雲がかかっている場合があるためと考えられた。 切出し画像単位で雲量を推定し、海岸線抽出の可 否を事前に判断するなどの工夫が効果的であろう。

画像合成による雲の除去方法は、各シーンの雲 量によらず機械的に処理できる反面、合成に用い る画像の撮影期間(本研究では1年間)の平均的 な汀線位置しか抽出できない欠点がある。対象海 岸を絞った詳細調査では、事前にシーンを選定し たうえでシーン毎に汀線抽出を行い、広範囲の海 岸を対象とした調査では、画像合成を用いて中期 的な変動を把握するなどの使い分けが考えられる。

5. おわりに

本研究で使用したSentinel-2の各センサーは解 像度が10mであり、本稿で示した誤差には解像度 の低さに起因する差も含まれている。商用衛星で は解像度が1m以下のものもあり、それらの画像 も使用することで精度の向上が期待される。

また、本研究で採用したNDWI指標に代わって RGB画像に適用可能な画像変換手法を確立する ことで、過去に撮影された航空写真やUAVによ る撮影画像なども解析可能となると期待される。

本稿で紹介した画像解析手法を活用して、全国 の砂浜における汀線変化のモニタリングを進める とともに、モニタリングの結果を海岸管理者が容 易に閲覧・取得可能になるようにしていきたい。

謝 辞

神奈川県及び国土交通省の北陸地方整備局黒部 河川事務所、中部地方整備局沼津河川国道事務所、 九州地方整備局宮崎河川国道事務所からは測量成 果を提供いただいた。ここに記して謝意を表する。

参考文献

- 津波防災地域づくりと砂浜保全のあり方に関する懇 談会:砂浜保全に関する中間とりまとめ、2019. https://www.mlit.go.jp/river/shinngikai_blog/tsun amiKondankai/index.html
- Luijendijk, A. et al.: The State of the World's Beaches, Scientific Reports, 8: 6441, 2018.
- 3) 渡邊ほか:光学衛星画像からの汀線抽出における画 像処理方法の適用性評価、土木学会論文集B2(海 岸工学)、Vol.77、No.2、pp.I_1111~I_1116、 2021.
- (2) 渡邊ほか:衛星SAR画像からの海岸線抽出の適用 性と誤差要因の分析、土木学会論文集B2(海岸工 学)、Vol.75、No.2、pp.I_1285~I_1290、2019.

国土交通省国土技術政策総 合研究所河川研究部海岸研 究室 主任研究官、博士(農 学) Dr. WATANABE Kunihiro

国土交通省国土技術政策総 合研究所河川研究部 海岸 研究室長、博士(工学) Dr. KATO Fuminori