水中での長期暴露によりASR損傷した RC梁の耐荷性能及び補修効果の評価

坂本裕司・今野貴元・河野哲也・七澤利明

1. はじめに

近年、フーチングのアルカリシリカ反応(以下 「ASR」という。)による損傷事例が確認されている が、地中・水中等の不可視部にあるフーチングの ASR損傷に対する知見は少なく、特に、実橋に近い 環境下でASRを長期間進行させた大型部材において 耐荷性能や補修効果を確認した例は無い。

本文では、フーチングと耐荷機構が類似する、 せん断スパン比が小さく厚いRC梁(ディープビー ム)供試体を約8年半にわたり水中環境下で暴露し、 ASR損傷がどのように進展するのかを確認した。 さらに、ASR進展の収束後に供試体に対し載荷実 験を行い、損傷及びその補修が耐荷性能にどのよう な影響を与えるのかを検討した。

2. 暴露実験

2.1 供試体概要

供試体配筋図を図-1に示す。旧建設省通達による アルカリ総量規制の前で、ASRが生じやすい昭和 50年代を想定し、引張鉄筋比を0.3%、圧縮鉄筋比 を0.05%とした。この結果、曲げ耐力の計算値は 593.8kNとなる。なお、供試体下面の鋼材はPC棒 鋼であるが、本文では鉄筋と称している。

骨材のペシマム量(ASR膨張量が最大となる反応性: 非反応性の骨材比)は粗骨材50:50、細骨材40:60とし¹⁾、ASRを促進させるため添加アルカリとしてNaClを12kg/m³混入した。コンクリート配合及び材料試験結果を表-1~表-3に示す。

2.2 実験ケース

表-4に実験ケースを示す。Case1は初期値確認用 のASRが生じていない供試体である。Case2、 Case3は鋼製水槽に水没させた実環境下で約8年半 の暴露養生を行った供試体であり、3.の載荷実験で は、Case2はASRによる性能低下を確認するため補 修せず、Case3はひび割れ補修の効果を確認するた

図-1 供試体配筋図

表-1 コンクリートの配合

粗骨材	75,7°	売生早	W/C	c/2		単位量(kg/m ³)			NaCL			
大寸法	(cm)	도 <u>지</u> 표 (%)	(%)	s∕a (%)	w	C		S	(à	ΑD (kg)	(kg)
(mm)	(011)	()	(/0)	(/0)	**	0	S1	S2	G1	G2	(16)	(16)
25	12	4.5	58.9	45.5	162	275	493	339	499	514	2.75	19.9

表・2 コンクリートの材料試験結果

供試体	材齢	圧縮強度 (N/mm ²)	弾性係数 (N/mm ²)	試験材料
Case1	36日	35.8	25.4	テストピース
Case2	3277日	15.1	8.3	コア(供試体から直接採取)
Case3	3277日	15.3	6.7	コア(供試体から直接採取)

表-3 鉄筋の材料試験結果

仕様		材質	降伏強度 (N/mm ²)	引張強度 (N/mm ²)	
圧縮鉄筋	D6	SD 295A	323	489	
引張鉄筋	D12.6	SBPDL 1275/1420	1368	1472	

表-4 実験ケース

供試体	劣化程度	断面寸法 bw×h (mm)	せん断 スパン a(mm)	有効高さ d(mm)	せん断ス パン比 a/d	ひび割れ 補修
Case1	健全(初期値)	300				
Case2	劣化(水中暴露)	×	600	400	1.5	無し
Case3	劣化(水中暴露)	450				有り

め水中硬化型エポキシ樹脂を注入した。

2.3 実験結果

外観調査や鉄筋ひずみ等、補修前の計測項目では Case2とCase3で大きな違いは無かったため、特に 断りの無い限りCase2の結果を代表させた。

2.3.1 外観調査

実験後のひび割れ図を図-2に、形状寸法を図-3に 示す。ASR特有の亀甲状のひび割れが下面に比べ 上面に多く生じ、また、供試体中央下面が浮き、反 り上がった形状が計測された。これは、上面側が下 面側より鉄筋量が少なく拘束力が小さいため、膨張 量に差が出たものと考えられる。

2.3.2 鉄筋ひずみ

図-4に鉄筋ひずみと水温の時刻歴を示す。上下面

Assessment of Load Resistance and Repair Effect using RC Deep Beams with ASR Damage from Long-term Underwater Exposure

とも、ひずみは暴露後約半年から増加し、約4年で ほぼ一定になり収束している。上面鉄筋のひずみは 約8000 µ で降伏している。夏場にひずみが大きく 増加し、既往の知見¹⁾のとおりASRによる鉄筋ひず みの増加は温度に強く依存している。

2.3.3 材料試験

表-2に各供試体から採取したコアの圧縮強度及び 弾性係数を示す。Case1とCase2、Case3を比較する と、圧縮強度は約4割、弾性係数は約3割と、ASR損 傷により大きく低下したことが分かる。

2.3.4 コア目視による損傷深さの検証

水平方向に抜いたコアでASRによる供試体の損 傷状況を観察したところ、図-5に示すように外縁側 では顕著なひび割れが最大100mm程度まで進展し ていたが、中心部ではひび割れは確認できずASR 損傷は及んでいないと考えられる。

2.3.5 超音波の伝播特性

暴露後の各供試体2断面(CL・CL-600mm)の 図-2に示す測点において、超音波を上下・水平方向 に透過させ、スペクトル重心に着眼した指標のトモ グラフィ解析による損傷状況の評価を試みた。

図・6に解析画像を示す。ASR損傷が進行すると超 音波の伝播速度が低下し、高周波数帯域が減衰して 低周波数帯域が卓越するため、高周波数帯の青色側 が損傷の少ない状態を表す。両断面とも鉄筋のかぶ り部分は、平均約20mm厚の全周においてスペクト ル重心周波数が30~33kHzの赤~黄色の範囲にあ る。上縁側は特に赤色を呈し損傷の大きい部分が多 く、赤色の最大厚さは約100mmに達していた。 ASR損傷は、シリカゲルの膨張に必要な水を供給 しやすいかぶり部の、特に鉄筋拘束力が小さい上縁 側から進展することが分かる。

2.4 暴露実験結果のまとめ

ASR損傷は、鉄筋やコンクリートの拘束力が小 さく、シリカゲルの膨張に必要な水を供給しやすい 外縁部ほど顕著に見られる。また、鉄筋ひずみは周 囲の温度に強く依存することがわかった。

ASRによってコンクリートの圧縮強度、弾性係 数は低下し、特に弾性係数は大きく低下した。

超音波トモグラフィ解析については、大断面の 場合の精度など解明すべき点はあるが、解析画像と コア目視とで損傷深さが概ね一致したことから、実 構造物において非破壊で損傷状況を確認できる損傷 度評価手法としての適用可能性を示した。

3.1 実験概要

載荷方法は図-7に示す2点対称の静的単調載荷と した。載荷開始時は荷重制御で、剛性が低下しひび 割れが発生した時点で変位制御に切り替えた。

3.2 実験結果

3.2.1 荷重変位関係

図・8に各供試体の荷重変位関係を示す。ここで、

変位はスパン中央の鉛直変位を示している。

健全なCase1では、荷重120kN付近でスパン中央 に曲げひび割れが発生し、この時点から剛性が低下 した。変位制御に切り替えた際に若干変位が流れた 後はほぼ一定の勾配で推移し、線形的に荷重が増加 した。せん断耐力の計算値550kN付近で主筋に 沿ったせん断ひび割れが発生した。最大荷重 696kN到達後、載荷点間のコンクリートが圧壊し、 荷重が緩やかに低下した。

Case2は、荷重250kN付近で下面に曲げひび割れ が発生し、剛性が低下した。その後緩やかに勾配は 低下し続け、400kNから変位制御に切り替えた。 変位5mm手前でせん断ひび割れが発生し荷重が低 下した。しばらく荷重が横ばいの後、変位6mm付 近から再び増加し、最大荷重565kN到達後、荷重 が急激に低下しせん断破壊した。

Case3は、荷重350kN付近から曲げひび割れが一 気に発生し、剛性が低下した。400kNから変位制 御に切り替え、変位5mm付近で勾配が横ばいとな り、せん断ひび割れが発生した。その後やや剛性を 戻し、変位8mmで荷重が低下し、大きな斜めひび 割れが生じている。最大荷重668kN到達後、荷重 が急激に低下しせん断破壊した。

3.2.2 ひび割れの進展状況・破壊性状

各供試体のひび割れ進展状況を図-9に示す。

Case1は、スパン中央下端に生じた曲げひび割れ が載荷側へ上昇した後、曲げスパンの若干外側下端 にも曲げひび割れが生じた。荷重の増加と共にそれ らがさらに上昇し、主筋に沿ったひび割れ発生後、 載荷点間が圧壊し、曲げ破壊に至った。

Case2、Case3は、①スパン中央部に曲げひび割 れ発生②曲げひび割れ進展③せん断ひび割れ発生④ せん断破壊の順で最大荷重に達したのは同様だが、 図-10のとおりひび割れの性状に違いが見られた。 Case2はASRで発生したひび割れを結ぶように曲げ ひび割れが細かく進展し、斜めひび割れも複数生じ ている。一方、Case3はASRで発生したひび割れと ほぼ無関係に少ないひび割れが大きく進展している ことより、ひび割れ注入で表面が一体化され最大荷 重が増加したが、ねばりはなく脆性的な破壊に至っ たことが分かる。またCase1の曲げ破壊に対し、 Case2、Case3は明確なせん断破壊であり、ASR損 傷によるせん断耐力の低減は曲げ耐力の低減よりも 大きいことが確認された。

図-10 破壊状況

3.2.3 載荷実験結果のまとめ

健全なCase1の曲げ破壊に対し、ASR損傷の Case2、Case3は、脆性的なせん断破壊となった。 ひび割れ補修を施したCase3は、最大荷重が健全供 試体近くまで回復したが、補修無しのCase2より最 大変位がやや低下した。また、初期剛性はCase1よ りASR損傷のCase2、Case3の方が高くなる現象が 見られた。これは、ASRの膨張差で反り上がった 形状により、鉛直荷重に対し一種のプレストレス力 を発揮した可能性が考えられる。また、注入材がコ ンクリートを一体化させ、結果的に剛性及びせん断 強度を高めたと考えられる。

4. 耐力評価

4.1 計算値と実験値の比較

ASR損傷がせん断耐力に及ぼす影響を検討する ため、せん断耐力の計算値と実験値を比較した。せ ん断耐力Vcの算出には①道路橋示方書²⁰②コンク リート標準示方書³⁰③二羽式4)を用い、圧縮強度は 表・2の実強度を使用した。表・5に各供試体の計算値 と実験値の比較結果を示す。なお、Case1は載荷実 験で曲げ破壊したが、曲げとせん断の破壊荷重は均 衡しており参考値として比較する。

いずれの供試体・計算式でも計算値より実験値 が上回り、Case2、Case3では計算値と実験値の乖 離が見られる。この一因は、供試体から採取したコ アの材料試験で得られた圧縮強度を計算に用いたた め、鉄筋拘束力の影響が反映されておらず、その結 果計算値が低下したことが考えられる。

表-5 計算耐力と最大荷重の比較

	実験最大荷重		
道示Ⅳ	コン示	二羽式	Р
325kN	278kN	550kN	696kN
243kN	180kN	309kN	565kN
244kN	181kN	312kN	668kN
	<u>道</u> 示IV 325kN 243kN 244kN	<u>計算せん断耐力</u> 道示IV コン示 325kN 278kN 243kN 180kN 244kN 181kN	<u>計算せん断耐力 V。</u> 道示IV コン示 二羽式 325kN 278kN 550kN 243kN 180kN 309kN 244kN 181kN 312kN

4.2 有効断面を減ずることによる耐力評価

ここでは、ASR損傷を有効断面が減じられてい る状態と仮定して耐荷力を評価する。Case2は健全 なCase1より20%程度耐力が低下している。そこで、 Case2ではひび割れによりコンクリートが一部欠損 していると仮定し、欠損厚tがどの程度であれば計 算上のせん断耐力が20%低減するか、二羽式を用い て求めた。欠損有りと無しの場合の、コンクリート 強度及び引張鉄筋量を一定とし、t=20mmを供試体 全周から控除して試算したところ、せん断耐力は 20%程度低減し、超音波トモグラフィ解析で赤~黄 色を呈し損傷が大きい部分の平均厚さ約20mmと一 致している。これは、超音波トモグラフィ解析であ

坂本裕司

研究当時 土木研究所構造 物メンテナンス研究セン ター交流研究員、現 茨城 県道路維持課係長 Hiroshi SAKAMOTO

土木研究所構造物メンテ ナンス研究センター 交流研究員 Takamoto KONNO

る一定以上の損傷を示す部分は有効断面から減ずる という方法により、耐力評価ができる可能性を示し ている。また、ひび割れ補修の効果についても、注 入により断面の欠損を回復させたと見なすことで説 明できる。

5. まとめ

(1) ASRによる損傷程度は、鉄筋の拘束力が小さ く、シリカゲルの膨張に必要な水を供給しやすい外 縁部ほど大きい。鉄筋ひずみは温度に強く依存し、 低温下ではひずみ量がほとんど増加しない。

(2) 超音波トモグラフィ解析で、ASRによるコン クリート内部の損傷状況を相対的に評価できる。

(3) ASR損傷によってせん断耐力は低下し、破壊 形態はより脆性的となる。ひび割れ補修を施すこと で耐荷性能を幾分回復させることができる。

(4) ASR損傷したディープビームの耐荷力は、超 音波トモグラフィ解析で損傷を示す部分を有効断面 の欠損と見なすことで概ね評価できる。また、ひび 割れ補修の効果は、注入により断面の欠損を回復さ せたと見なすことで説明できる。

なお、実構造物の耐荷性能評価にあたっては、 上載荷重やせん断補強筋及びケミカルプレストレス の影響等、今回の検討でまだ解明していないところ もあり、今後更なる検討が必要である。

参考文献

- 1) 中谷昌一、七澤利明、白戸真大、竹口昌弘、河野哲 也:アルカリシリカ反応による損傷を受けたフーチ ングに対する損傷度評価および補修・補強方法に関 する研究、土木研究所資料、第4304号、2015
- (社)日本道路協会:道路橋示方書・同解説IV下部構 造編、2012
- 3) (公社)土木学会:コンクリート標準示方書[設計編] 2012
- 4) 二羽淳一郎:FEM解析に基づくディープビームの せん断耐荷力算定式 第2回RC構造のせん断問題に 対する解析的研究に関するコロキウム論文集、日本 コンクリート工学協会、JCI-C5、1983

河野哲也

土木研究所構造物メンテ ナンス研究センター 主任研究員、工博 Dr. Tetsuya KOHNO

土木研究所構造物メンテ ナンス研究センター 上席研究員 Toshiaki NANAZAWA