河道セグメント2における細粒土砂堆積に伴う 高水敷再形成の簡易予測手法の開発

武内慶了* 大沼克弘** 佐藤慶太*** 服部 敦**** 藤田光一*****

1. はじめに

報文

砂礫を河床材料とする河道セグメント2では、 低水路河床部をウォッシュロードとして流下する 細粒土砂が水際や高水敷上の植生繁茂域に一部捕 捉され堆積することが知られており1),2)、河道管 理の面からもその重要性はすでに認識されていた ⁵⁾が、実務上実効性のある予測ツールはほとんど なかった。川内川の事例(図-1,2)では、一連の区 間に渡って低水路を拡幅した後、約7~9年とい う比較的短期間で元の川幅と同程度まで高水敷が 再形成された。これは細粒土砂の流送量が砂礫に 比べてはるかに大きい3)ので、その一部が堆積す る条件がひとたび整うと、河積の減少が速やかに 生じうることを意味している。掘削に対してこの ような応答を示す河道については、拡幅の仕方を 工夫するなど維持管理労力を低減することが重要 である。その検討のため、高水敷再形成の予測技 術として、通常用いられている河床変動計算手法 とは異なり、植生繁茂域へのウォッシュロード堆 積を対象としたモデルが必要とされる。そこで本 研究は、川内川を事例として高水敷再形成の実態 を明らかにし、その知見に基づいて高水敷再形成 の簡易予測手法を構築し、実河川への適用性につ いて検討した結果について報告する。

2. 細粒土砂堆積に伴う高水敷再形成の実態

川内川の検討対象区間(66.8~77.2km)にお ける横断形状変化を観察した結果、図・3に示すよ うに主に河岸付近に堆積するタイプ(以下、河岸 際凸型)と、図・4に示すようにほぼ一様に堆積す るタイプ(以下、一様堆積型)が見られた。

高水敷再形成が生じた一連区間ごとに、上流端 からの流下距離と低水路・高水敷水深比の関係か ら、各堆積タイプの発生領域を調べた結果を図-5 に示す。堆積タイプは目視により判断し、河岸侵

図-2 拡幅後の横断形状変化(川内川70.4k)

食等により明確に区別できないものについては、 分析対象から除外した。低水路水深hm及び高水 敷水深hAは、当該横断測量の実施年月から次の測 量実施年月の間に発生した最大流量流下時の水位 Hsを1次元不等流計算により算定し、図・3、4に 示す低水路及び高水敷平均河床高 Zbm、Zfm との差 分として求めた。また、一連区間の上流端から対 象断面までの距離として流下距離Lを求めた。河 岸際凸型と一様堆積型が混在する領域があるもの の、h_f/h_mが同等である場合、L/h_fの増加に従い 一様堆積型から河岸際凸型に変化する。また、 L/hfが同等である場合、hf /hmの減少に従い一様 堆積型から河岸際凸型に変化する。これらの傾向 は、砂州の位置が直線部、湾曲部(内岸側)によ らない。以上より、一連の砂州において、堆積形 状は上流部ほど一様堆積型に、下流部ほど河岸際 凸型になる。また、低水路・高水敷の比高差が小 さい(h_f/h_mが1に近い)高水敷再形成の初期段 階においては、砂州上流端からの距離によらず一 様堆積型となる傾向にあることがわかった。これ

Development of the simplified estimation method for flood plain reformation by accretion of fine-grained soil in river segment 2 $\,$

らの結果から、一様堆積型は一連区間の上流端側 において横断方向にほぼ一様な細粒土砂濃度と見 なせる低水路部の流れが高水敷上にそのまま乗り 上げて下流に移流していく際に、細粒土砂が植生 により捕捉され堆積するため、形成されると推察 される。

3. 横断形状変化の簡易予測モデルの構築

3.1 予測モデルの基本的考え方

前章に述べた分析結果を踏まえ、形成メカニズ ムを次の2つに分けて考え、それぞれに応じた横 断形状変化の簡易予測モデルを構築した。河岸際 凸堆積型は、その横断形状が藤田ら2)による近似 計算結果と良く類似しており、低水路部を流下す る細粒土砂が横断方向に拡散し、高水敷上の植生 による捕捉・堆積により形成されると考えられる。 よってこのタイプを「横断方向拡散型」と定義す る。一方、一様堆積型は、細粒土砂の横断方向拡 散現象からは説明できない堆積形状を呈しており、 細粒土砂が上流から縦断方向に移流し、植生によ る捕捉・堆積により形成されると考えられる。 よってこのタイプを「縦断方向移流型」と定義す る。基本的考え方を以下に示す。1)縦断方向に擬 似等流を仮定し、横断面での河道形状変化を対象 とした。2)細粒土砂の供給方法は、前述の横断方 向拡散型、縦断方向移流型に対応させ、低水路か らの拡散、上流からの移流の2通りを選択できる ものとした。3)植生の効果を考慮した。4)取扱う 細粒土砂は単一粒径とした。5)細粒土砂の堆積の みを考慮し、堆積範囲を予め与える方法とした。 なお、領域区分図として図-5を用い、4.の計算で 用いる細粒土砂の供給方法を選択した。

3.2 基礎方程式及び計算の手順

横断形状変化の簡易予測モデルに用いた基礎方

程式を示す。まず、流れの基礎式として、流下方 向に擬似等流を仮定した河道横断方向の運動方程 式である(1)式と連続式(2)式を用いた。

$$gI_{b} - \frac{gn_{b}^{2}\overline{u}^{2}}{h^{4/3}} + \frac{1}{h}\frac{\partial}{\partial y}\left(h\varepsilon\frac{\partial\overline{u}}{\partial y}\right) = 0$$
(1)
$$Q = \int h\overline{u}dy$$
(2)

ここに、:重力加速度、*L*_b:河床勾配(擬似等 流仮定によりエネルギー勾配と同等)、*n*_b:粗度 係数、*ū*:流下(x)方向の水深平均流速、*y*:横断 方向の座標、*e*:横断方向の渦動粘性係数(= *Bu*h*)、*u**:摩擦速度、*h*:水深、*Q*:流量を示す。

次に細粒土砂堆積に関する基礎式を示す。同様 に擬似等流を仮定し、河道横断面方向の浮遊砂濃 度に関する拡散方程式を(3)式、流砂の連続式を (4)式に示す。

$$D_{n} \frac{\partial^{2}(\overline{c}h)}{\partial y^{2}} + \frac{\partial D_{n}}{\partial y} \frac{\partial(\overline{c}h)}{\partial y} - D_{n} \frac{\partial h}{\partial y} \frac{\partial c_{b}}{\partial y} - c_{b} \left(\frac{\partial h}{\partial y} \frac{\partial D_{n}}{\partial y} + D_{n} \frac{\partial^{2}h}{\partial y^{2}} \right) + \left(q_{su} - w_{0}c_{b} \right) = 0 \quad (3)$$

$$\frac{\partial Z_b}{\partial t} = \frac{-1}{1 - \lambda} (q_{su} - w_0 c_b) \tag{4}$$

図-6 再現計算結果(川内川74.0k断面)

ここに、*Z*bは高水敷再形成域における高水敷面 の標高、*c*:浮遊砂濃度、*c*b:河床底面の浮遊砂 濃度、*c*:浮遊砂の水深平均濃度、*D*n:横断方向 の拡散係数、*q*su:浮遊砂の河床からの巻き上げ 量、*w*₀:土粒子の沈降速度、λ:土粒子の空隙 率、*t*:時刻を示す。

横断方向拡散型の場合には、細粒土砂の低水路 からの拡散による供給を再現するため、境界条件 として、一般に用いられるウォッシュロード濃度 式c=aQから得られる濃度を河岸近傍の低水路部 に与え、植生域においては藤田ら4の考え方に従 い、(3)、(4)式ともに、(*q_{su}-wocb*)を(-*owocb*)に置 き換えて計算した。なお、これは堆積速度 $R_D = \sigma w_0 c_b$ とおいたことを意味する。 σ は浮遊土砂 の捕捉率を表す。このような境界条件の与え方と したのは、高水敷植生域へ供給される細粒土砂の 濃度は植生域に最も近い低水路部の濃度によって 決まるものであり、また、低水路部は流下断面の 中でも流速が大きい領域であり、浮遊する細粒土 砂が良く混ざり合うことから、低水路内での濃度 がほぼ一様と見なせると考えたからである。一方、 縦断方向移流型の場合には、上流からの一定濃度 供給に伴う植生域への細粒土砂堆積を再現するた め、(3)式を用いず植生部のみに細粒土砂の一様 濃度を与え、(4)式の(q_{su}-w₀c_b)を(-ow₀c_b)に置き換 えて計算した。実際は低水路部にも細粒土砂が供 給されるものの、出水時の摩擦速度が大きく、ほ とんど河床に堆積せずに流下すると考え、植生部 のみの細粒土砂堆積を対象とした。本研究では o=1/3と設定した4)。

浮遊砂の鉛直濃度分布式は(5)式に示すLane-Kalinske型の濃度分布を用いた。

ここに、*Dz*:鉛直方向の拡散係数(=*кu*h*/6)、 *z*:鉛直方向の座標を表す。(5)式を鉛直方向に積 分すれば、水深平均濃度*c*が得られる。

 $\frac{c}{c_{b}} = \exp\left(-\frac{hw_{0}}{D_{z}}\frac{z}{h}\right)$ (5) 流量 Qを与え、(1)式から得られる水深と流速及

び、細粒土砂の粒径と供給濃度を(3)式に代入し、 河床底面濃度 cbを未知数として解いた。cbを用い て(4)式を解き、河床高の変動量を計算した。

4. 計算条件の設定方法及び計算結果例

横断形状変化の簡易予測モデルによる計算で必 要な条件のうち、細粒土砂の粒径及び供給濃度に ついては、高水敷再形成に対し直接的に影響を与 えることから、それらの設定に注意を要する。こ こでは、川内川において実際に採水観測された結 果を用いて、細粒土砂粒径及び供給濃度を以下の 手順により設定した。1) 複数回分の採水に含ま れる浮遊砂の粒度分布を平均化した。2)実際に高 水敷に堆積する細粒土砂の最大粒径を把握し、そ れ以下で1)の粒度分布を再構成した。3)観測結果 から、前述の濃度に関する係数aの幅をある程度 定め、計算により再現性の高い細粒土砂粒径と供 給濃度の組み合わせを求めた。図・6及び図・7にそ れぞれ、川内川74.0k(横断方向拡散型)及び 70.4k(縦断方向移流型)を対象とした再現計算 結果を示す。いずれも細粒土砂粒径を0.08mm、 供給濃度 c はそれぞれ 6.5×10⁻⁷Q、3.0×10⁻⁷Qと した。また、74.0k(図-6)断面は低水路河床が 低下傾向にあるため、出水時の冠水深を適切に考 慮すべく、測量年月を迎えるごとに低水路部の河 床変動量を反映・更新した。横断方向拡散型とな る74.0k断面(図-6)では、河岸部の高水敷高さ は概ね再現できているものの、河岸部の裏側の堆 積は十分に表現されていない。計算結果から河岸 付近の堆積部斜面の横断勾配は約40度となって おり、計算に与えた細粒土砂粒径の水中安息角よ り大きくなっていることから、堆積形状が水中安 息角以下で安定する効果が組み込まれていないこ と、及び、低水路内濃度に比べ小さいながらも、 縦断方向移流型による細粒土砂供給を見込んでい ないことが考えられ、改善の余地を残す。縦断方 向移流型となる70.4k断面(図-7)では、高水敷 の形成幅及び堆積高さは良く再現されている。対 象区間で実際に観測された浮遊砂濃度は、粒径 0.1mm以下で*c*=4.5~5.7×10⁻⁷*Q*程度であり、横 断方向拡散型で与えた濃度と大きな違いはない。 縦断方向移流型で与えた濃度は横断方向拡散型で 与えた濃度に比べ小さい。これは、細粒土砂が一 連の植生域を縦断方向に移流するに従い、対象断 面より上流側で捕捉され、縦断距離の増大に従い 細粒土砂濃度が減少したものと説明できる。

5. まとめ

上流端からの距離Lに着目し、細粒土砂堆積に 伴う横断形状変化のタイプごとに、その発生領域 を調べた。次に横断形状変化の簡易予測モデルを 開発した。適用対象とする河川の浮遊砂観測結果 を用いることで実現象を表現でき、さらに細粒土 砂の供給方法を組み合わせることによって、現状 より精度の高い予測ができる見通しを得た。この モデルの開発によって、従来定性的に取扱われて いた細粒土砂堆積現象を、定量的に評価すること が可能となった。より精度の高い予測計算実施の ために、1次元河床変動計算と組み合わせ、低水 路部の河床変動を見込む方法の開発も併せ、今後 の課題である。また、実際の河道変化は、細粒土 砂の堆積現象が中心であるものの、河岸侵食現象 が共存する場合があることがわかっている。より 精度の高い予測手法とするためには、河岸侵食の 影響も考慮する必要がある。横断形状変化の簡易 予測モデルを河道管理に活用することにより、以 下に示す効果が期待される。1)計画性の観点から、 河積減少速度を算定し、将来生じ得る河積維持の ための河道掘削のタイミングを推定することが可 能となる。2)河積減少速度をより小さくすること を目的とし、河道掘削形状の検討が可能となる。 3)必要流下能力を確保する手段の検討を想定した 場合に、対象期間内における河道掘削による維持 管理労力を算定するツールとして活用できる。

謝 辞

本研究の実施にあたり、国土交通省九州地方整 備局川内川河川事務所より、貴重な調査データを 提供いただいた。ここに記して謝意を表します。

参考文献

- 1) 木下良作:航空写真による洪水流解析の現状と今後 の課題、土木学会論文集、第345号/Ⅱ-1、pp.1~19、 1984.5
- 2) 藤田光一、John A. MOODY、宇多高明、藤井政 人:ウォッシュロードの堆積による高水敷の形成と 川幅縮小、土木学会論文集、第551号/Ⅱ-37、pp.47 ~ 62 , 1996
- 3) 藤田光一:流砂系における土砂動態のとらえ方と 広域土砂動態制御への展望、2000年度(第36回) 水工学に関する夏期研修会、pp.B-4-1~4-15、 2000
- 4) 藤田光一、李参熙、渡辺敏、塚原隆夫、山本晃一、 望月達也:扇状地礫床河道における安定植生域消 長の機構とシミュレーション、土木学会論文集、 第747号/II-65、pp.41~60、2003
- 5) 河道特性に関する研究-その3- ~河床変動と 河道計画に関する研究、第46回建設省技術研究発 表会報告、pp.600~651、1992

国土交通省国土技術政 策総合研究所河川研究 部河川研究室 研究官 Yoshinori TAKEUCHI

国土交通省国土技術 政策総合研究所環境 研究部河川環境研究 室 主任研究官 Katsuhiro ONUMA

国土交通省国土技術 政策総合研究所河川 研究部河川研究室 部外研究員、博(工) Dr. Keita SATO

国土交通省国土技術政 策総合研究所河川研究 部河川研究室長、博 (T)

国土交通省国土技術 政策総合研究所河川 研究部流域管理研究 官、工博 Dr. Atsushi HATTORI Dr. Koh-ichi FUJITA