

数値解析による地すべりとトンネルの影響評価

1. はじめに

地すべりとトンネルの離隔距離は、トンネル掘 削によるゆるみの影響を考慮してすべり面から 2.0D以上(Dはトンネルの内径)離すことが目安 とされている¹⁾。しかし、地すべりは規模や運動 様式がそれぞれ異なり、また地すべりとトンネル の位置関係や周辺の地山状況によっても相互影響 は変化することが想定される。そこで、数値解析 を用いて、地すべりとトンネルの位置関係や基盤 の地山物性値を変化させたパラメトリックスタ ディを行い、地すべりとトンネルの相互影響を評 価する手法について検討した。なお、本研究は民 間企業5社との共同研究で実施したものである²⁾。

2. 数値解析手法の概要

検討に用いた5種類の数値解析手法を表・1に示 す。弾塑性有限要素法や個別要素法など代表的な 解析手法を網羅している。適用した構成則は Drucker-pragerモデルとMohr-Coulombモデル であり、いずれも代表的な弾塑性モデルである。 マニフォールド法と個別要素法ではすべり面を分 離可能な不連続面としており、他の解析手法では 連続面としている。

地すべりの下をトンネルで掘削した事例におい て、実際に観察されたトンネル坑内および地すべ りの観測結果と5種類の解析手法の解析結果を比

藤澤和範* 奥田慎吾** 九田敬行***

較して、それぞれの解析手法の適用性を確認した。 その結果、地山の物性値や形状を適切に設定する ことにより、トンネル掘削に伴って発生した地山 の変形を概ね再現することができた。

3. 解析方法

3.1 解析モデル

パラメトリックスタディに用いた解析モデル図 を図-1に、地山物性値を表-2に示す。地盤は地す べり土塊・基盤1・基盤2の3層から成り、基盤1 については、強・中・弱の3段階の物性値を設定 した。本検討では、地すべりとトンネルの相互影 響を評価することを目的としているため、何らか の誘因によって地すべりが発生する可能性が高い 状態(安全率が1.0に近い状態)に設定している。 トンネルの位置は、地すべり土塊の頭部・中央 部・末端部の3ケースとし、それぞれすべり面か ら0.5D・1.0D・1.5D・2.0D・3.0Dの5ケースの 離隔距離を設定した(以降の検討ではD=10mと している)。境界条件は、側面を鉛直ローラー、 底面を固定とした。また、斜面勾配30°を基本 モデルとして、斜面勾配が20°と45°の解析モ デルを作成した。

3.2 解析の手順

解析の手順は、まずトンネル掘削前の状態で自 重解析を行い、次にトンネル掘削相当部分の応力 を解放してトンネル掘削を模擬している。トンネ

Numerical Analysis of the Interaction between a Landslide and a Tunnel

*1 Mohr-Coulomb降伏基準を用いた場合 *2 Drucker-Prager降伏基準を用いた場合

図-2 離隔距離と土被り厚の影響を分離した解析結果

ル掘削時の応力解放力は、吹付けコンクリートや ロックボルト等の支保を考慮した結果、無支保の 場合の応力解放力の70%とした。

以上の条件で解析を行い、地すべりとトンネル の離隔距離が変化するにしたがって、トンネル掘 削時に発生する地すべり土塊やトンネル内空断面 の変位がどのように変化するか着目するとともに、 解析領域内の塑性域やひずみの発生分布状況を勘 案して総合的に評価を行った。

3.3 解析結果の予備検討

トンネル掘削時に発生する変位量は、地すべり とトンネルの離隔距離の影響と、トンネルの土被 り厚による応力解放力の影響を合計した結果と考 えた。そこで、簡易な解析モデルを作成して、離 隔距離の影響と土被り厚の影響を分離した検討を 行った。その結果、離隔距離の影響による変位量 と土被り厚の影響による変位量の合計が、分離せ ずに解析したときに発生する変位量と概ね一致す ることを確認した(図・2)。解析結果として得ら れる変位量のうち、土被り厚の影響で発生してい る変位を低減できれば、離隔距離の影響を評価し やすくなると考えられる。

4. 解析結果

4.1 トンネル位置による影響

パラメトリックスタディによる解析結果の一例 として、有限差分法を用いて、基盤1の物性値が 弱、トンネル位置が末端部、中央部、頭部の塑性 域 - 変位ベクトル図を図-3,4,5に示す。トンネル 位置が末端部では(図-3)、地表面の変位ベクト ルは同じ向きを示し、末端ほど大きな変位が発生 した。1.5D以上の離隔距離をとると、トンネル 周辺で発生する塑性域がすべり面に到達しないこ とを確認した。トンネル位置が中央部では(図-4)、地表面の変位ベクトルの向きは末端部と比 べて複雑になり、地すべりの中央付近ではトンネ ルに引きずられる傾向が見られた。3.0D以上の 離隔距離をとると、トンネル周辺で発生する塑性 域がすべり面に到達しないことを確認した。トン ネル位置が頭部では(図-5)、地すべりの頭部付

図-3 塑性域 - 変位ベクトル図(末端部)

図-4 塑性域-変位ベクトル図(中央部)

図-5 塑性域 - 変位ベクトル図 (頭部)

報文

近ではトンネルに引きずられる傾向が見られた。 また、離隔距離を変化させたときに斜面全体の変 形は異なる傾向を示した。

4.2 斜面勾配の影響

個別要素法を用いて、トンネル位置が中央部、 離隔距離が0.5D、基盤1の物性値が強、斜面勾配 が20°、30°、45°の最大せん断ひずみの分布 を図-6に示す(ただし、地すべり土塊の物性値は 斜面勾配ごとに異なる)。図中では、トンネル掘 削時に1.5%以上のひずみが発生した箇所を着色 している。

トンネル周辺のひずみ分布は、斜面勾配が大き くなるにつれて、鉛直方向からの傾斜が大きくな る分布傾向を示した。これは、トンネル掘削前の 初期応力が斜面勾配に沿った方向に傾斜しており、 その影響を受けてトンネル掘削時のひずみ分布が 異なっていると考えられる。地すべり土塊内のひ ずみ分布は、トンネルの直上ではなくやや斜面下 方に発生しており、斜面勾配30°ではすべり面 に沿って斜面下方に、斜面勾配45°ではさらに 斜面上方にひずみが発生した。特に斜面勾配が 45°の場合は、トンネル周辺と地すべり土塊周 辺のひずみが干渉し、ひずみが大きく分布する結 果となっている。

4.3 離隔距離の評価

個別要素法を用いて、トンネル位置が中央部、 基盤1の物性値が強、離隔距離が0.5D~3.0Dの最 大せん断ひずみの分布を図-7に示す。先ほどと同 様、トンネル掘削時に1.5%以上のひずみが発生 した箇所を着色している。離隔距離が1.5D以上 ではトンネル周辺のひずみと地すべり土塊内のひ

図・6 最大せん断ひずみ分布図(斜面勾配)

ずみが独立した分布となり、1.0D以下ではつな がっている。離隔距離が大きくなるにつれて相互 の影響が小さくなっていることが読み取れる。

図-8は、トンネルの天端沈下量、地表面の最大 鉛直変位量、地表面の最大水平変位量をそれぞれ 土被り厚で除したものを指標として、離隔距離と の関係を示した図である。離隔距離が2.0D以上 では概ね平衡状態を示し、1.5D以下では離隔距 離が小さくなるにつれて変位量が大きく増加する 傾向が見られた。

本ケースでは、解析領域内のひずみ分布や各指 標と離隔距離の関係から、離隔距離が2.0Dより 小さくなると地すべりとトンネルの相互影響が大 きくなり危険であると判断した。

図-8 各指標と離隔距離の関係

4.4 パラメトリックスタディのまとめ

斜面勾配30°、基盤1の物性値が強のケースの 各解析手法による離隔距離の評価をとりまとめた ものを図・9に示す。図中の赤の着色区間を危険と 評価している。本ケースでは、各解析手法による 評価のばらつきは、概ね1.0Dの範囲に収まるこ とが確認できた。また、各解析手法で変形機構に 大きな差異は見られなかった。基盤1の物性値が 弱のケースや斜面勾配45°のケースでは、設定 した離隔距離3.0Dの中では評価できない結果と なった。

パラメトリックスタディの条件の違いによって、 以下のような傾向が得られた。

- (1) 基盤1の物性値が弱いほど、大きな離隔距離 が必要となる。
- (2) トンネル位置が末端部から頭部へ向かうほど、やや大きな離隔距離が必要となる傾向があるが、明確な違いは見られない。ただし、変形の傾向は異なる。
- (3) 斜面勾配が急勾配になるほど、大きな離隔 距離が必要となる。

藤澤和範*

理研究グループ地すべり チーム 上席研究員 Kazunori FUJISAWA

独立行政法人土木研究所 つくば中央研究所土砂管 理研究グループ地すべり チーム 交流研究員 Shingo OKUDA

5. おわりに

本稿では、数値解析手法を用いて地すべりとト ンネルの相互影響を評価する方法を検討してきた。 その結果、検討に用いた解析モデルにおいて、定 量的な評価が可能であることを示した。また、パ ラメトリックスタディの結果から、各条件を変化 させた際の地すべりとトンネルの相互作用に関す る機構を示した。

こうした評価は、主として、適切な路線を選定 する道路計画段階で有効な手法と考えている。さ らに、解析結果はその後の工程でも有意な情報を 与えてくれる。例えば、地すべりとトンネルの相 互の影響が大きくなった際の変形機構をあらかじ め捉えておくことで、実際に異常が発生したとき には早期発見が可能である。また、変形が発生し やすい箇所を中心に監視を行うなど、施工中や施 工後の計測計画にも活用できる。

今後は、実際の現場における複雑な地山条件、 トンネルの構造、施工条件、トンネル掘削時の周 辺地山の変形機構などを反映した解析モデルを構 築し、トンネル掘削時に観察されるデータと対比 することで、より適切な解析モデルの構築方法や 解析結果の評価方法を検証していく必要がある。

参考文献

- 1) 財団法人高速道路調査会:トンネル坑口周辺の地す べり・崩壊対策に関する研究報告書、337p、1981
- 2) 独立行政法人土木研究所、基礎地盤コンサルタンツ 株式会社、応用地質株式会社、鹿島建設株式会社、 日本工営株式会社、川崎地質株式会社:トンネルへ の地すべりの影響評価手法に関する共同研究報告書、 準備中

フィト工業株式会社(削 独立行政法人土木研究所 つくば中央研究所土砂管 理研究グループ地すべり チーム 交流研究員) Takayuki KUDA