報文

微地形が河川堤防の耐浸透機能に及ぼす影響

1. はじめに

河川堤防(以下「堤防」という。)に求められる安 全に関わる機能の一つに、耐浸透機能がある。耐浸透 機能とは、洪水時の降雨および計画高水位以下の河川 水の浸透により堤防が不安定化すること(写真-1)を 防止する機能であり、全堤防区間で必要とされる。

現行の耐浸透機能の照査¹は、堤防を区間分けし、 区間を代表する横断面の土質構造と、横断方向の浸透 流を考慮して実施される。堤防は長大な構造物であり、 堤防沿いの微地形などの影響を受けて、縦断方向の浸 透流も生じると考えられる。しかしながら、現行の照 査手法を解説した手引き²では、旧河道等を要注意地 形として指摘しつつも、具体的な影響程度や微地形、 堤防縦断土質変化を考慮した照査手法については示さ れていない。

本文では、堤防の二次元・三次元(2D・3D)浸透 流解析を実施することにより、微地形等が耐浸透機能 に与える影響を調査した結果を報告する。

Influence of microgeomorphology on the stability of liver levees for seepage induced failures

齋藤由紀子* 森 啓年** 杉田秀樹***

2. 堤防の二次元・三次元浸透流解析

2.1 解析の概要

堤防の二次元・三次元浸透流解析³は、河川水位の 上昇と降雨を受けた際の、堤体内水位や堤体・基礎地 盤の水圧等について、経時的に追跡する手法である。 今回用いた解析モデルは、堤体の高さ5m、のり面勾 配1:3、河床勾配1:250で、縦断方向に1,000m、横断 方向に300mの範囲という単純な形状を基本とした。 解析条件と、モデル地盤の浸透に関する入力パラメー タを表-1に示す。初期条件としてG.L.-1mの地下水位 を設定し、図-1に示す河川水位と降雨が与えられた場 合の堤体内水位等を算出し、堤防の耐浸透機能を検討 した。

表-1	解析条件と入力パラメータ

ケース	解析条件 (地形・土質構 造)	堤 透水 (cn	体 係数 1/s)	基礎地盤 透水係数 (cm/s)
1	落堀	$5E-4^{**}$		1E-4 ^{**} 1
2	透水ゾーン	$3E-3^{*_2}$		1E-4 ^{**} 1
3	堤体縦断土質 不連続	1E-2 ^{※2} (上流)	3E-3 ^{※2} (下流)	$1E-4^{**1}$

不飽和浸透特性は、手引き(参考文献2)に基づいて設定 (設定区分 ※1:砂質土、※2:礫質土~砂質土)

2.2 落堀の影響(ケース1)

手引き²によると、浸透による堤防の被害は、旧河 道・旧落堀のように特定の治水地形分類の箇所に多発 する傾向が知られており、このような地形を「要注意 地形」と呼んでいる。落堀とは、過去に堤防が決壊し た際にできたくぼみで、一般に周辺地盤より標高が低 い。堤内地(川裏)に落掘のように標高の低い部分が 存在する場合、上下流からの浸透水の集中が予想され ることから、図-2の解析モデルを設定し、耐浸透機能 に関する影響を検討した。

堤体内水位が最も上昇する高水位継続時間終了時点 (図-1、230h)における、落堀周辺の浸透流の流速ベクトル分布を図-3に示す。流速ベクトルより、落堀に 向かって、周辺部から水が浸透する流れが生じている ことがわかる。

図-3 浸透流の流速ベクトル (ケース1、G.L.-0.5m)

つぎに、周辺地盤から落堀に向かって浸透する水の 流れが、堤防の耐浸透機能に与える影響として、堤体 内水位と局所動水勾配を整理した。局所動水勾配とは、 基礎地盤のパイピングに対する安全性を照査する指標 で、堤防裏のり尻近傍の圧力水頭の局所的な変化率を 表すものである。手引き²⁰では、鉛直方向と水平方向 の局所動水勾配の最大値が0.5未満であることを照査 基準としている。

堤体内水位が最も上昇する高水位継続時間終了時点 (図-1、230h)における、堤体内水位と局所動水勾配 を図-4に示す。図-4より、落堀部の横断面 (Y=602.5m)で三次元と二次元の解析結果を比較す ると、堤体内水位に違いはほとんど見られない。一方、 三次元解析結果で落堀部と周辺の落堀が無い部分を比 べると、堤体内水位はほぼ同じであるが、落堀部の方 が鉛直方向の局所動水勾配が大きい結果となった。落 堀部では、堤内地の標高が低く、周辺部と比べて内外 水位差が大きくなったためと考えられる。

以上のことから、落堀等により周辺部より堤内地の 標高が低い箇所では、パイピング安全性が相対的に低 下するため、堤内地の微地形を適切に把握した上で堤 防縦断方向の区間分けと照査断面の選定を行うことが 重要であるといえる。また、今回検討した堤防条件で は、落堀内の断面を選定することにより、現行の二次 元の照査手法を用いて落堀部の耐浸透機能の評価は可 能であると考えられる。

2.3 基礎地盤内の透水ゾーンの影響(ケース2)

洪水時の氾濫や流路変化を繰り返している河川では、 基礎地盤の土質構造が複雑な場合が多い。特に旧河道 等、透水性の高いゾーン(以下、「透水ゾーン」とい う。)が存在し、堤防と交差する場合は、縦断方向の 浸透流の影響が想定される。そこで、図-5の解析モデ ルを設定し、耐浸透機能に関する影響を検討した。

堤体内水位が最も上昇する高水位継続時間終了時点 (図-1、230h)における、基礎地盤表層の鉛直局所動 水勾配分布を図-6に、パイピング照査結果を表-2に示 す。

今回の解析モデルのように基礎地盤の透水ゾーンが 堤内地に入り、再び河川に戻るように位置している場 合、透水ゾーンと堤防裏のり尻が交差する部分付近で 局所動水勾配が大きくなることがわかった。また、局 所動水勾配が最大になる地点の横断面を抽出して二次 元解析を行ったところ、表-2のとおり、二次元解析で は水平局所動水勾配を過小に評価している可能性があ ることがわかった。

以上のことから、基礎地盤内に旧河道のような透水 性の高いゾーンが存在する箇所では、パイピング安全 性が低下する可能性があるため、旧河道等の微地形を 適切に把握した上で堤防縦断方向の区間分けと照査断 面の選定を行うことが重要といえる。今回検討した堤 防条件では、透水ゾーンと堤防裏のり尻が交差する部 分付近の断面で照査することが適切と考えられるが、 透水係数等の条件によっては、三次元解析や現地モニ タリングによる検討も望まれる。

図-5 透水ゾーンの検討モデル (ケース2)

図-6 鉛直局所動水勾配分布 (ケース2, G.L.-0.25m)

表-2	パイ	ピングの照査	(ケース2,	230h)
-----	----	--------	--------	-------

	鉛直局所 動水勾配	水平局所 動水勾配
3D(最も安全性 が低い断面**)	2.06 (Y=668m)	0.59 (Y=677m)
2D((比較対象断面)	2.22	0.35

※解析モデル内で、局所動水勾配が最大となる節点を含む断面

2.4 縦断方向の堤体透水係数分布の影響(ケース3)

堤防は長大な構造物であることから、築堤の時期や 築堤材料が、区間によって異なる。そこで、図-7のよ うに、縦断方向に堤体の透水係数が異なる解析モデル を設定し、透水係数が変化する境界付近の耐浸透機能 を検討した。

堤体の透水係数が変化する地点(Y=500m)付近に おける、縦断方向の堤体内水位を図-8に示す。三次元 解析の結果、洪水開始後200時間の時点では、透水係 数の高い上流側の堤体内水位の上昇が速く、その影響 を受けて下流側の水位も上昇する現象が見られた。

堤体内水位が最も上昇する高水位継続時間終了時点 (図-1、230h)では、透水係数の境界付近からやや下 流側(Y=508m)で堤体内水位が最大となった。二次 元解析より三次元解析の堤体内水位が10cm以上高い 結果となったのは、洪水開始200時間後においては縦 断位置Y=500~510m、230時間後ではY=504~515m の範囲であった。

つぎに、堤体縦断土質が不連続であることで上昇し た堤体内水位が耐浸透機能に与える影響として、円弧 すべり安全率と局所動水勾配を整理した。円弧すべり 安全率とは、堤体のり面のすべりに対する安全性を照 査する指標で、現場の築堤履歴等により異なるが、手 引き²⁾では1.2以上であることを照査基準としている。 堤体と基礎地盤の内部摩擦角がそれぞれ30度、35度 であると仮定すると、円弧すべり安全率は表-3の結果 となり、二次元解析と三次元解析との間に大きな違い は見られなかった。また、鉛直・水平局所動水勾配の 最大値も、表-3に示すとおり二次元解析と三次元解析 で大きな差は認められなかった。

図-7 堤体縦断土質不連続の検討モデル (ケース3)

表-3 安全性照査(ケース3, 230h)				
	円弧すべり	鉛直局所	水平局所	
	安全率	動水勾配	動水勾配	
3D (Y=508m)	1.13	0.34	0.32	
2D (3DのY=508m断 面で二次元解析)	1.15	0.34	0.33	

以上のことから、縦断方向に堤体の透水係数が変化 する場合、堤防縦断方向の土質構造を把握して区間分 けを行い、それぞれの区間において照査断面の選定を 行うことが重要であるといえる。今回検討した堤防条 件では、変化点付近で堤体内水位がやや上昇する可能 性はあるものの、土質構造に応じた断面を選定するこ とにより、現行の照査手法を用いた耐浸透機能の評価 は可能であると考えられる。

図-9 耐浸透機能に関する高精度な検討手法

独立行政法人土木研究所 つくば中央研究所材料地 盤研究グループ土質・振 動チーム 研究員 Yukiko SAITO

独立行政法人土木研究所 つくば中央研究所材料地 盤研究グループ土質・振 動チーム 主任研究員 Hirotoshi MORI

3. まとめ

堤防の耐浸透機能の照査を高度化することを目指し て、微地形や堤防縦断土質を考慮した数値解析を実施 した。その結果、微地形等に応じて堤防縦断方向の区 間分けと照査断面の選定を行うことの重要性を示した。 適切に断面選定することで、現行の照査方法でも、堤 防縦断方向の浸透流を考慮した場合と同等に耐浸透機 能を評価できる堤防条件があることも明らかにした。 今回は、非常に単純化した土質構造について検討した が、今後は現場における堤体内水位等のモニタリング データと解析を組み合わせた詳細検討や、対策工法の 三次元的な効果検証についても取り組む予定である。

また、耐浸透機能が低い微地形や土質構造を照査す る前提として、浸透に対して弱点となる可能性がある 箇所を適切に抽出することが重要である。この点につ いては、土研の重点プロジェクト研究「治水安全度向 上のための河川堤防の質的強化技術の開発」の中で、 検討している^{4),5)}。最終的な成果として、図・9に示す 仕組みで、耐浸透機能に関する弱点箇所の抽出、照査、 対策工法選定の高精度な検討手法を提示したい。

参考文献

- 1) 国土交通省河川局治水課:河川堤防設計指針、 2002.7.
- 国土技術研究センター:河川堤防の構造検討の手引 き、2002.7.
- 西垣誠、三菱マテリアル(株)、ダイヤコンサルタント(株):解析コードDtransu-3D・EL、著作権登録 番号P第7169-1号、NETIS登録番号KT-000069
- 4) 品川俊介:河川堤防周辺の地形と堤防被災との関係 -河川堤防の概略点検結果から分かること-、土木 技術資料、第50巻12号、pp.43-44、2008.12.
- 5) 稲崎富士:河川堤防安全性評価への統合物理探査情報の活用、土木学会河川技術論文集、pp.85-90、 2008.6.

60

杉田秀樹***

独立行政法人土木研究所 つくば中央研究所材料地 盤研究グループ、工博 Dr. Hideki SUGITA