一般報文

崩壊時に土砂が流動化するがけ崩れに関する実態調査

1. はじめに

九州地方に記録的な大雨をもたらした平成29 年7月九州北部豪雨は、九州地方で316件の土砂 災害を引き起こし、その内がけ崩れによる災害は 148件を占めた(国土交通省砂防部)。

この大雨により、長大斜面(高さ30m以上のが け)の崩壊の際に土砂が流動化する事例も複数発 生した。崩壊土砂が流動化すると、流下する土砂 量が増えたり到達距離が延びたりすることから、 想定を上回る被害が発生しやすいと言われている。 ここで流動化とは、元の岩組織が残っておらず破 砕や土砂状化し流下しているものとした。なお、 崩壊土砂が急傾斜地(高さ5m以上、勾配30°以 上のがけ)の土砂災害警戒区域の設定上限である、 がけ下から50mを超えて到達するのは、昭和47 年~平成19年のがけ崩れデータ(19,035件) いに よると、全体の2%未満と少ない。しかし、土砂 災害警戒区域は自治体の地域防災計画の作成や住 民が自主避難の必要性を判断するのに用いること から、流動化しやすい箇所の条件を特定すること は人的被害の軽減に直結する。

土砂災害研究室では、事例は少ないものの大規

村田郁央・長谷川陽一・野呂智之

写真·1 桂川地区全景

2. 調査地の概要

一般に地質により崩壊状況が異なることから、 調査地は長大斜面の崩壊が発生した地域に分布す る地質ごとに1カ所ずつ選定し、計4地区とした。

Field Investigation on the Fluidization of Collapsed Sediment

図-1 調查地周辺地質図

図-2 LP差分図(桂川地区)

2.1 調査地の地質

調査地周辺の地質図2)を図-1に示す。

朝倉市桂川地区(写真-1)には三郡・周防変成 岩類(砂質)が分布する。朝倉市黒川地区には三 郡・周防変成岩類(泥質)が、同市導目木川地区 には花崗閃緑岩が分布する。大分県日田市の鶴河 内川地区では河川を挟んだ2箇所で調査を行った が、両調査地とも非アルカリ苦鉄質火山岩類が分 布する。

2.2 桂川地区災害概要

崩壊土砂は一部が流動化し、がけ下の家屋に半 壊1戸・一部損壊1戸の被害を及ぼし、倉庫を突 き抜けて道路に到達していた。全体の崩壊土砂量 は約2.900m³、その内流動化した土砂量は約 2,000m³であった。桂川地区の被災前後のLP データで差分図を図-2に示す。斜面中腹にある道 路よりも上方にある上部崩壊地では、元々斜面途 中に擁壁が入っていたこともあり崩壊は表層が浅 く崩れたのみであった。崩壊土砂の一部は擁壁上 で止まり、それ以外は流下する際に斜面の表面を 薄く削り取っていた。対して下部崩壊地では、向 かって左側の斜面では地すべり性の滑動を起こし ており(図-3,4)、斜面上に土砂がとどまってい た(約900m³)。向かって右側の斜面では最大崩 壊深が6mと深く、崩壊土砂の大半が流動化して いた。人家等に影響を与えた土砂の大半は、この 下部崩壊地の右側斜面から出ていた。がけ下の痕 跡を見ると、樹皮がはがれている高さから崩壊土 砂の流動深は120cm程度あったものと推定される。 崩壊規模は上部崩壊地で高さ73m、幅28m、下部 崩壊地で高さ46m、幅53m、平均崩壊深は1.9m、 崩壊土砂の到達距離は96mであった。ここで、高 さはがけ下と崩壊地上端の標高差、到達距離は、 がけ下から崩壊土砂到達部下端までの水平距離と した(図-3)。なお、当該地区は福岡県により緊 急的な急傾斜地崩壊対策事業を実施することが決 定している。

3. 調査結果

3.1 現地調査結果

表・1に各調査地の地形、地質等 の調査結果を示す。降雨起因のが け崩れの約半数は勾配40~60°の 範囲で発生している¹⁾が、今回調査 した4地区は24~40°と比較的緩い 勾配であった。崩壊土砂量は全体 の67.5%が100m³未満¹⁾であるのに 対し、約3,000~5,000m³、最大崩 壊深は約6~10mと大規模なもので あった。崩壊土砂の等価摩擦係数 は0.29~0.37と比較的小さく、が け下からの崩壊土砂の到達距離は 50m以上と長距離である。崩壊土 砂の地質は崖錐堆積物の箇所が多 い。斜面形状は縦断形状が直線・凹 型、横断形状が直線・谷斜面となっ ており、凸型・尾根斜面の箇所はな かった。植生はスギや竹が主体で、 どの調査地も裸地部分はなかった。 崩壊土砂に含まれる粘土鉱物は多種 であり、特徴はみられなかった。崩 壊の規模が大きく等価摩擦係数が小 さい点は、基岩から崩壊して河道閉 塞などの大災害をもたらすことのあ る深層崩壊と傾向が似ていた³⁾。

3.2 室内土質試験結果

崩壊土砂が流動化する素因を検討 するにあたって、過去の国総研にお ける検討では3.1のように地形、地質

等についてその関連性を検討してきたが、崩壊土 砂の物理特性についてはデータが不足している状 態であったため、今回は室内土質試験により崩壊 土砂の物理特性を評価した。4地区6試料の土質 試験結果を表・2に示す。なお、崩壊直後の崩壊土 砂の含水状態については素因検討において重要な 要素であると考えているが、今回の調査は崩壊発 生から一か月以上後に行ったものであるため、得 られた自然含水比は崩壊直後のものとはなってい ない。

土粒子の密度については一般的な値の範囲内に あり、特徴はみられない。粒度分布および地盤材 料の分類名では、粘性土主体のものや砂礫主体の ものがあり、特徴はみられない。過去の検討4)で

図·4 桂川地区平面図

は、細粒分が多いほど間隙水圧が上昇しやすく流 動化が起きやすいという傾向が得られているが、 本調査ではその傾向はみられなかった。コンシス テンシー特性については、図-5に塑性図を示すが、 液性限界が27~74%、塑性指数が10~37と低~ 中塑性な値となっており、高塑性を示す試料はな かった。

4. まとめ

桂川地区の平均崩壊深は1.9mで統計から出さ れる90%値¹⁾の範囲内であり、流動深は1.2mで 多くの都道府県が待受擁壁の設計の際に仮定する 流動深1m(崩壊深2mの半分と仮定)ともおおよ そ一致していた。

	表・1	現地調査結果
--	-----	--------

調査地	桂川	黒川	導目木川	鶴河内川(上流)	鶴河内川 (下流)	
崩壊地の勾配(°)	30	33	40	25	24	
崩壞土砂量(m ³)	2939	4927	5087	5095	-	
平均崩壊深 (m)	1.9	2.1	2.2	2.8	-	
最大崩壞深 (m)	6.0	7.4	10.3	6.0	-	
崩壊高(m)	73	59	69	67	95	
崩壊土砂の 等価摩擦係数	0.29	0.37	0.32	0.29	0. 33	
がけ下からの 到達距離(m)	96	86	292	187	130	
地質 (崩壊土砂)	火山灰 崖錐堆積物	崖錐堆積物	砂質・泥質片岩, 花崗岩(マサ)	り質・泥質片岩, 崖錐堆積物 花崗岩(マサ)		
地質 (基岩)	緑色片岩	泥質片岩	砂質・泥質片岩, 花崗閃緑岩	岩礫凝灰岩 (安山岩礫)	輝石安山岩	
斜面形状	直線 谷斜面	直線 直線斜面	凹型 谷斜面	凹型 谷斜面	凹型 直線斜面	
主な植生	竹	スギ・竹	スギ	スギ	スギ	
主要粘土鉱物	土鉱物 バーミキュライト バーミキュラ		スメクタイト	緑泥石, ハロイサイト	緑泥石, ハロイサイト	

調查地 試			土粒子 盛材料 の密度	自然 含水比	粒度分布(%)			コンシステンシー特性			
	試料名	試料名 地盤材料 の分類名			礫分	砂分	シルト分	粘土分	液性 限界	塑性 限界	塑性 指数
			ρ _s g/cm³	Wn %	2-75 mm	0.075-2 mm	0.005-0.075 mm	0.005 mm未満	$W_L(\%)$	W _P (%)	I_P
桂川	崩壞土砂	火山灰質 粘性土	2.85	26.7	0.0	8.9	34.9	56.2	47.3	25.0	22.3
月 黒川 月	崩壊土砂 (浅)	砂礫質 粘土	2.72	23.9	16.1	27.9	36.9	19.1	41.4	22.4	19.0
	崩壊土砂 (深)	粘性土質 礫質砂	2.74	20.8	26.4	32.7	30. 3	10.6	31.9	20.3	11.6
導目木川	崩壊土砂	粘性土質 砂質礫	2.73	5.7	63.4	21.4	9.6	5.6	26.9	16.6	10.3
鶴河内川 (上流)	崩壊土砂	砂礫質 粘土	2.75	29.6	20.1	27.6	34.9	17.4	61.7	28.8	32.9
鶴河内川 (下流)	崩壞土砂	火山灰質 料性土	2.74	50.9	0.0	15.5	32.0	52.5	73.6	37.0	36.6

表-2 土質試験結果

崩壊土砂の流動化がみられた4地区での現地調 査の結果、崩壊地の勾配が比較的緩勾配で、崩壊 土砂量と最大崩壊深が大きく、等価摩擦係数が小 さいといった特徴がみられた。また崩壊土砂のコ ンシステンシー特性(塑性)も到達距離に影響を 及ぼす要素と考えられる。一方、本事例は日雨量 が500mmを超える稀な雨であったことから誘因 の影響が大きかった可能性がある。今後は深層崩 壊の検討と同様に、稀な雨および通常 想定される雨による流動化事例につい て調査を行うほか、これまでデータが 集められてこなかった崩壊土砂の土質 試験のデータ(特にコンシステンシー と崩壊直後の含水比データ)を増やし、 誘因(雨の降り方)と素因の関係につ いても検討していきたい。

最後に、平成29年7月九州北部豪雨 により被災された福岡県・大分県の皆 様の一日も早い復旧・復興を祈念いた します。

参考文献

- 小山内信智、冨田陽子、秋山一弥、松下智洋、が け崩れ災害の実態、国土技術政策総合研究所資料、 No.530、2009
- 2) 産業技術総合研究所、20万分の1シームレス地質
 図、https://gbank.gsj.jp/seamless/maps.html
- 3) 例えば、砂防学会、深層崩壊に関する基本事項に係 わる検討委員会報告・提言、2012
- 4) 桂真也、冨田陽子、小山内信智:崩壊土砂が流動 化する危険性のある斜面をいかに抽出するか?、 国総研レポート2011、2012

国土交通省国土技術政策総合研 究所土砂災害研究部土砂災害研 究室 研究官 Ikuo MURATA

国土交通省国土技術政策総合研 究所土砂災害研究部土砂災害研 究室 交流研究員 Yoichi HASEGAWA

国土交通省国土技術政策総合研 究所土砂災害研究部土砂災害研 究室長 Tomoyuki NORO