ヘリコプターからの斜め写真を用いた SfMによる天然ダム形状の計測

赤澤史顕・高橋佑弥・黒岩知恵・藤村直樹・水野秀明

1. はじめに

天然ダムが形成されると、「土砂災害警戒区域 等における土砂災害防止対策の推進に関する法 律」に基づいて、天然ダムの決壊を原因とする土 石流・湛水による天然ダムの上流の浸水により被 害の生じるおそれのある区域の調査が行われる。 土石流については到達する範囲を数値解析^{1),2)}に より想定し、また、浸水については地形図と天然 ダムの形状からその範囲が想定される。土石流・ 浸水のそれぞれの範囲には天然ダムの高さなどの 形状が重要なファクターとなるため、天然ダムが 形成された場合、天然ダムの形状と位置の計測が 行われる。

近年、SfM(Structure from Motion)と呼ばれ る複視点のデジタルカメラ画像から対象物の三次 元形状データを取得できる技術があり、天然ダム の形状の計測についてもSfMを活用できる可能性 がある。既往研究^{3),4)}ではSfMを利用してUAVに よる空撮画像から地形を計測する試みが幾つか行 われているが、本検討では災害後のヘリコプター による調査で得られる写真から天然ダム形状を取 得することを目指し、搭乗者が撮影した斜め写真 からSfMを行い地形モデルを作成し天然ダムの形 状の計測を試みた。作成された地形モデルは同じ 箇所で行われた航空レーザ測量による結果と比較 し、どの程度の精度で標高値が取得できるのか検 討した。

2. 天然ダム形状の既存の計測手法

天然ダム形状の既存の計測手法に関しては、ヘ リコプターからの長距離レーザ距離計⁵⁾、航空 レーザ測量がある。航空レーザ測量は詳細なデー タが得られるが、計測結果の解析に時間を要する。 長距離レーザ距離計に関しては、計測後すぐに結 果を使用できる利点がある。

一方で、ヘリコプターからの長距離レーザ距離

図-1 湯浜地区の天然ダム (2016年6月29日撮影)

計による計測は幾つか高い技術が求められる点が ある。一つ目は天然ダムが形成された直後の等高 線の図面もない中で、上空からの目視で堆積土砂 の高低を判断して越流開始地点等の計測地点の位 置を決めることである。二つ目はレーザ距離計を 計測者がヘリコプター内で手に持って計測を行う ため、揺れや手ぶれの影響を受ける中での計測が 求められることである。そのため、計測者は訓練 等によりある程度の熟練が求められる。

これらを踏まえると、天然ダムの形成直後の計 測には、①越流開始地点等の計測地点を客観的に 決めるため三次元形状を把握すること、②計測の 習熟度の違いによって計測結果にばらつきが生じ ないこと、③被害が生じるおそれのある区域の情 報提供までに時間的猶予がなく計測結果を短時間 に出せること、が求められる。これらの要求を満 たす手法としてSfM(Structure from Motion)に よる計測が考えられ、本検討ではSfMによる天然 ダムの形状の計測を試みている。

3. SfMによる天然ダムの計測と計測対象

3.1 計測対象の天然ダム

本検討では、2008年岩手宮城内陸地震により 生じた湯浜地区の天然ダムを対象とした(図-1)。 湯浜地区では現在対策工事が進められており、堤 体上に床固工、堤体下流部に鋼製セル堰堤が設置 されている。

Landslide Dam Shape Measurement from Aerial Images Taken by a Helicopter Using Structure from Motion

図・3 SfMによる処理のフロー(左:GCP(標定点)を設定する場合の処理の流れ,右:本検討の処理の流れ)

図-2 使用したデジタルカメラとGPSユニット

3.2 使用したソフトウェアおよび機材

SfMソフトウェアには、既往研究^{3),4)}によく用 いられている商用ソフトウェアのPhotoScan (Agisoft 社, Professional Edition, Version 1.2.3)を用いている。PhotoScanは撮影した写 真を入力すれば、SfMの一連の処理を比較的簡単 な操作で行うことができる。また、写真に座標 データが付いていれば地理座標が付与された地形 データを作成できる。処理を行う際に用いたPC は、OSがWindows7 (64bit版)、CPU (3.6GHz, スレッド数8)、メモリが32GB、グラフィック ボードが無いものを使用している。写真撮影には、 Nikon D7000 (約1600万画素) を使用し、 GPSユニット (GP-1A、位置精度10mRMS) を 装着している(図-2)。撮影時の条件としては、 f=5.6、シャッタースピード1/400~1/250、ISO-100、オートフォーカスで撮影した。

3.3 本検討によるSfM処理の特徴と形状の計測

図-3にSfMで写真画像から三次元モデルを生成 するまでの流れについて既往研究による処理の流 れと、本検討で行った方法による処理の流れを示 している。 既往研究で行われている処理の流れとしては、 図・3の左のフローに示されているように、デジタ ルカメラによる写真撮影の後、SfMソフトによっ て処理を行う。ソフト内の処理としては、写真の 撮影位置が推定され、そこから三次元モデルとし て撮影対象の三次元形状が構築される。その後、 地理座標を付与するため、GCP(標定点)の設 定が行われ、地形モデル(DSM)が出力される。

GCP(標定点)の設定を行う際は、計測対象 上で数点の座標値が既知である必要がある。既知 点が十分にある場合、それを用いて座標を付与す るのは有効な方法であるが、天然ダムが形成され る山間地では既知点が十分にない場合が多いため、 GNSS(GPS)等の別途測量の実施が考えられる。 しかし、天然ダムの形成直後は、道路が寸断され ている場合もあり、そのような状況で現地におい て測量を行うことは容易ではない。そのため、 SfMによる計測の際にはGCP(標定点)の設定が 課題となり、別の手段を想定する必要がある。

本検討で行った処理を図-3の右のフローに示し ている。本検討では、GPS付きのデジタルカメ ラを使用することにより、写真データに撮影位置 の座標データが埋め込まれ、GCP(標定点)の 設定をしなくても地理座標が付与された三次元モ デルを作成できる。そのため、天然ダムの周囲か ら複数枚写真を撮影すれば、天然ダムの三次元的 な地形データを計測することができる。

2016年6月29日にヘリコプターにより上空を飛行し、天然ダムの周囲から52枚写真を撮影しSfM により地形データ(DSM)を作成した。地形 データ作成に要した時間は6時間であった。

図・4 航空機からの空中写真

4. SfMにより作成した地形データの検証

4.1 検証方法

SfMによる処理を行い、作成した湯浜地区の天 然ダムの地形データ(DSM)を同じ場所で2013 年10月~11月に計測された航空レーザ測量 (LP)による地形データ(DEM)により検証し た。

4.2 等高線による天然ダム形状、崩壊部の比較

天然ダムとその周辺部についてSfMによって作 成した地形データ、航空レーザ測量による地形 データについてそれぞれ等高線を作成し、GIS上 で重ね合わせて比較した。

図-4に2013年に航空レーザ測量が行われた際 の正射変換された空中写真を示している。地震に より斜面が崩壊し、土砂が斜面下に堆積し、赤丸 の部分において天然ダムが形成されている。

図-5にSfMと航空レーザ測量による10m毎の等 高線を重ね合わせたものを示している。天然ダム 堤体部分について、等高線の形状を比較すると、 SfMと航空レーザ測量による等高線は若干異なる ものの概ね同じ形状となっており、SfMにより天 然ダム形状が概ね表現できることが確認された。

4.3 縦断図による標高値の検証

計測された天然ダム堤体の標高値を検証するた

図-5 SfMと航空レーザ測量の等高線(10m毎)の比較と縦断測線の位置

め縦断図を作成した。縦断測線の位置は図-5に示している。

図・6はダム堤体部の縦断図で、図・5の紫色の測線上の縦断図となる。天然ダム天端の標高を比較してみると、SfMでは標高約514m、航空レーザ 測量では標高約520mであり、5.8mの違いであった。天端以外部分についても、SfMと航空レーザ 測量の標高値の違いは+7.0~-5.3mの範囲で あった。天然ダムは高さが数+mのものも多く、 SfMは天然ダムの形成直後の計測として十分な精 度を有していると考えられる。

図・7は流路部の縦断図で、図・5の橙色の測線上 の縦断図となる。流路部の標高値についても、上 流からの距離が0~350mの区間については数m程 度の違いであった。一方、上流からの距離が350 ~550mの区間については標高値が異なっていた。 この理由は、砂防堰堤の設置による影響と考えら れた。航空レーザ測量が行われた2013年は鋼製 セル堰堤が建設中で4基のうち図・4に示すように 中心の2基は設置されていなかった。今回、SfM 処理に使用した写真の撮影時(2016年6月)には、 4基の全セルが完成しており、それにより堰堤上 流に堆砂が進行し、上流から350~550mの区間 についてはSfMによる標高値が高くなり、堆砂面 により標高値が一定となったと考えられる。

4.4 検証結果

本検討によるSfM処理の方法により、天然ダム 形状、標高を数mの精度で計測できることが分 かった。航空レーザ測量による標高値の計測精度 は0.3m、GNSS (GPS) の位置精度は10mRMS、 長距離レーザ距離計による計測の精度は10m程度 5)といわれている。このことから、本検討の方法 は、天然ダムが形成された直後の形状の計測にお いては十分な精度を有していると考えられる。

5. まとめ

本検討では、GPS付きのデジタルカメラを用 いたSfMにより湯浜地区の天然ダム形状を計測し、 航空レーザ測量の結果との比較による検証を行っ た。その結果、天然ダムの形状、天端の標高を数

mの精度で計測できることがわかった。

本検討の手法は、GPS付きのデジタルカメラ で撮影することにより、SfM処理で行われるGCP (標定点)の設定をしなくとも天然ダムの地形 データを簡単に得ることができる。また、SfMの 処理に要する時間は本検討で施行した湯浜地区の 計測では6時間であり、計測結果を短時間で得る ことができる。そのため、本検討の手法は、天然 ダム形成直後の形状の新たな計測手法として活用 されることが期待される。

謝 辞

本検討の実施にあたり、国土交通省東北地方整 備局にはヘリ調査に関してご協力いただくととも に、岩手河川国道事務所には航空レーザ測量の データをご提供いただきました。深く謝意を表し ます。

参考文献

- 里深好文、吉野弘祐、水山高久、小川紀一朗、内川 1) 龍男、森俊勇: 天然ダムの決壊に伴う洪水流出の予 測手法に関する研究、水工学論文集、第51巻、 pp.901~906, 2007
- 2) 清水武志、内田太郎、山越隆雄、石塚忠範: 天然ダ ムによる土石流想定範囲計算システム (QUAD-L)の開発と2011年台風12号災害における適用、土 木技術資料、第54巻、第10号、pp.14~17、2012
- 3) 内山庄一郎、井上公、鈴木比奈子:SfMを用いた三 次元モデルの生成と災害調査への活用可能性に関す る研究、防災科学技術研究所研究報告、第81号、 pp.37~60, 2014
- 4) 小花和宏之、早川祐弌、ゴメスクリストファー: UAV空撮とSfMを用いたアクセス困難地の3Dモデ リング、地形、第35巻、第3号、pp.283~294、 2014
- 5) 内田太郎、吉野弘祐、清水武志、石塚忠範、小竹利 明:長距離レーザ距離計を用いた天然ダム形状の計 測、土木技術資料、第53巻、第5号、pp.14~17、 2012

土木研究所土砂管理研 究グループ火山・土石 流チー -ム 研究員、博 (T)Dr.Fumiaki AKAZAWA

土木研究所土砂管理研 究グループ火山・土石 流チーム 交流研究員 Yuya TAKAHASHI

土木研究所土砂管理研 究グループ火山・土石 流チーム 交流研究 員、博(農) Dr.Chie KUROIWA

藤村直樹

土木研究所土砂管理研 究グループ火山・土石 流チーム 主任研究員 Naoki FUJIMURA

水野秀明

土木研究所土砂管理研 究グループ火山・土石 上席研究 流チーム 博 (農) 員. Dr.Hideaki MIZUNO