-般報文

地震により被災した橋梁の被災メカニズムの推定

1. はじめに

過去に発生した大地震において、落橋や長時間 の通行止めを要する致命的な被害が生じた事例が ある。一方で、損傷が生じた橋梁に近接する橋梁 で大きな損傷が生じていない事例もあり、すべか らく大地震の影響によって甚大な損傷に至るとは 限らない。こうした損傷状況の違いを分析し、橋 梁の地震時の実挙動に基づいて被災メカニズムの 違いを明らかにすることで、より精度のよい照査 法の適用が可能となり、優先的に対策すべき条件 が明確化されることが期待される。

本文では、東北地方太平洋沖地震によって損傷 が生じた橋台基礎と損傷が生じなかった近傍の橋 台基礎を対象とし、二次元動的有効応力解析によ り、橋台基礎の被災メカニズムの推定を行った結 果について報告する。

2. 対象橋梁の選定と被災状況

2.1 対象橋梁の選定

対象とした基礎は、損傷が生じていないA橋と 損傷が生じたB橋のそれぞれ橋台基礎1基とした。 両橋台は同一水系の護岸に位置し、約3km離れて おり、受けた地震動も含めて比較的類似した条件 にある。諸元等は表・1に示す通りである。いずれ の橋梁の場合も、下部構造の適用基準は、道路橋 下部構造設計指針 くい基礎の設計篇(昭和39年 3月)¹⁾であり、当該箇所の地盤条件は、地下水

橋梁 概要	対象橋梁		A橋	B橋	
	構造形式		逆T式橋台	逆T式橋台	
	橋長		176.5m	105. Om	
	支間長		4@35.7m+29.8m	3@34.3m	
	全幅員		12. Om	7.2m	
	竣工年		昭和49年	昭和43年	
	適用	上部	昭和47年	昭和39年	
	基準	下部	昭和39年	昭和39年	
	設計活荷重		TL-20	TL-20	
	上部構造形式		5径間単純鋼合成1桁	3径間単純鋼合成I桁	
	斜角		63°	70°	
	橋台 基礎 諸元	形式	杭基礎(斜杭)	杭基礎(斜杭)	
		杭種	鋼管杭	既製RC杭	
		杭長	18.5m	10. Om	
		斜杭	12°	10°	
		杭本数	27本	21本	
		杭径	600mm	400mm	
損傷概要			損傷なし	杭頭部のせん断破壊と,橋 台の約150mmの水平変位	

表1 対象橋梁の諸元と損傷状況の概要

Analysis of a Damage Mechanism affecting Bridges Damaged during the Tohoku Earthquake

田辺晶規・河野哲也・七澤利明・谷本俊輔

位が高く、N値が低い砂質土層が分布している。

これらの設計年代や地盤条件等が類似する橋台 基礎2基の損傷の違いを静的及び動的解析により 確認し比較することで、被災メカニズムの確認を 行った。

2.2 地震後の被災状況

A橋では、地震後に通行機能の支障となるよう な明らかな損傷や残留変位の発生が確認されてい ない。一方、B橋では、地震後に橋台(可動支承) 前面側端部の2本の既製コンクリート杭(以下 「既製RC杭」という。)杭頭付近のせん断破壊が確 認されている(図-1)。また、橋台躯体は約150mm 河川側に水平変位しており、桁遊間が0mmである ことが確認された。さらに、鋼桁の塗膜のはがれ、 落橋防止ケーブルのたるみなど、橋台が前面方向 に移動した痕跡が確認されている。

図-1 B橋(橋台)の杭頭部の被災状況

3. 解析手法

3.1 既設橋の復元設計

A橋・B橋ともに竣工図等が不鮮明であり、一部の杭の諸元や上部構造の死荷重反力等が不明で あった。一方で、二次元動的有効応力解析では、 下部構造に作用する慣性力や杭基礎の地震時の変 形特性に大きな影響を与える上部構造の重量及び 杭基礎の非線形特性(断面諸元等)等を把握する 必要がある。そのため、上下部構造の不明な情報 に関して当時の基準等を参考に、復元設計により 推定した。表-2には、復元設計によって求めた動

表-2 動的解析に用いる諸元

復元結果			単位	A橋	B橋	備考
上部	上部構造重量		kN	3700	2300	死荷重反力の情報が不明のため、一般図の 情報から床板厚や板厚、主桁厚等を確認し、 竣工時の設計活荷重(TL-20)を載荷
杭	ヤング係数	コンクリート	kN/m^2	2.0 × 10 ⁸	3.1 × 10 ⁷	復元解析の結果から算出
		鉄筋	kN/m^2		2.0×10^{8}	
	断面積		m ² /本	0.0130	0.07257	復元解析の結果から算出 鉄筋は考慮しない
	断面2次モーメント		m ⁴ /本	0.0006	0.00103	

的解析に用いる諸元を示す。

3.2 地盤条件

A橋及びB橋の既往の地質調査により設定した 地盤条件に関しては表-3に示す通りである。

3.3 解析モデルについて

3.3.1 解析ケースと解析断面

解析ケースは、損傷が生じていないA橋と損傷 が生じたB橋に対して地震時保有水平耐力法によ る静的解析と有限要素法(以下「FEM」という。) による二次元動的有効応力解析を実施した。なお、 既往の資料から杭頭接合条件は不明なため、杭頭 剛結と杭頭ヒンジ両方の接合条件で解析を行った。

解析断面は、斜角を有する橋台の前面方向への 移動に着目するため、土圧作用方向とした。

3.3.2 橋梁のモデル化

解析コードは、FLIP²⁾である。また、解析モデ ルの概要は図-3に示す。

各要素は、地盤及び橋台躯体を平面ひずみ要素、 杭基礎を非線形はり要素(バイリニア型又はトリ リニア型)、杭頭接合条件は剛結又はヒンジとし た。なお、杭体を非線形はり要素としてモデル化 するため、復元設計で想定した杭の断面諸元より 曲げモーメントMー曲率々関係を算出し、現行の 道路橋示方書³⁾に従い、既製RC杭はトリリニア とし、鋼管杭はバイリニアモデルとした(図-2)。 また、橋台背面と地盤の間には圧縮側のみに抵抗 するばね要素を用い、杭と地盤間にはジョイント 要素により周面摩擦を考慮した。

境界条件は、側方境界を粘性境界とした。また、 底面境界は地震波の観測条件の違いを考慮して、 A橋を粘性境界(露頭地盤で観測)、B橋を固定境 界(工学的基盤面で観測)とした。解析に用いる 地震動は図-3に示す通りであり、A橋の地震動は 約3km離れた観測所、B橋は約7km離れた鉛直ア レー記録(国土技術政策総合研究所より提供)4を 用いている。なお、正値が土圧作用方向である。 地盤の構成モデルは、双曲線モデルを有する多 重せん断ばねでモデル化した。特に、液状化層は、 井合らの提案したモデル²⁾を使用した。なお、B 橋のAs1層は、液状化試験結果を要素シミュレー ションで再現し、B橋のBs層とA橋のAs1層は液 状化試験データがないため、簡易法⁵⁾により動的 解析に用いる液状化パラメータを設定した。

図-3 解析モデル

3.3.3 計算手順

計算手順は、地盤内の初期応力状態を適切に推

定するために、まず橋台の施工過程を考慮して自 重解析を行い、自重解析で生じた応力状態等を初 期状態として動的解析を行った。ただし、自重解 析で生じる変位は動的解析に考慮していない。

4. 解析結果

4.1 杭基礎の破壊形態

図・4には、損傷が生じなかったA橋(鋼管杭) と損傷が生じたB橋(既製RC杭)の動的解析に よる上部構造の水平変位の時刻歴と損傷時刻を示 す。また、動的解析で杭に発生する曲げモーメン トとせん断力の最大値の深度分布と、静的解析で 最大震度のときの杭に発生する曲げモーメントと せん断力を示す。

4.1.1 A橋基礎の破壊形態

図-4(a)より、動的解析ではA橋の鋼管杭で は最大曲げモーメントが全塑性モーメントを超え る結果(93.15秒)となるが、最大せん断力はせ ん断耐力を超えていない。破壊形態は、曲げが先 行している結果である。曲げモーメントに着目す ると、杭頭接合条件によらず液状化層を境に曲げ モーメントの正負が逆転している。すなわち、杭 頭部と液状化層の中間で最も負の曲げモーメント が大きくなり、液状化層と杭下端部の中間で正の 曲げモーメントが大きくなっている。この杭の曲 げモーメントの正負逆転のモードは、地震動によ り液状化層(As1層)の剛性が著しく低下し、地 盤の振動変位が液状化層(As1層)に集中(局所 化)したため、杭が地盤の挙動に大きな影響を受 け大きな断面力が生じたと考えられる。

また、図-5(a)にはA橋の自由地盤(図中の白 枠囲い箇所)における最大変位を示しているが、 As1層(液状化層)を境に変形が大きくなってい ることが確認でき、As1層(液状化層)の上下層 では大きく増加していないため、地盤の振動変位 が集中していることが確認できる。

一方で、2.2に示したように、A橋の地震後の 調査から今回のような損傷が生じた兆候は確認さ れていない。また、静的な地震時保有水平耐力法 より算出した曲げモーメントの深度分布は、杭頭 部で大きな曲げモーメントが発生し、動的解析の 曲げモーメント分布のモードとは異なっており、 地盤の振動変位の影響を考慮できていない。この ように、一部で解析が実態を再現しきれていない 箇所もあるため、今後、解析モデルの精度向上等 について検討を行う必要がある。

図-5 両橋台の自由地盤における最大変位と液状化箇所 での曲げモーメントの深度分布

4.1.2 B橋基礎の破壊形態

図-4(b)より、B橋の既製RC杭では最大せん 断力が17秒付近でせん断耐力を杭①(背面杭) が超えはじめ、その後、31秒付近ですべての杭 でせん断耐力を超える結果となった。このB橋の 杭頭部のせん断破壊に関しては、現地での試掘調 査結果(図・1)とも一致しており、解析で同様の 傾向を評価できている。なお、地震開始後17秒 付近でせん断耐力を超えているのは、初期応力状 態で大きなせん断力が発生しているためである。 なお、初期応力状態を動的解析に引き継がない場 合でも、30秒付近ですべての杭がせん断耐力を 超えることを確認している。また、静的な地震時 保有水平耐力法より算出した曲げモーメントの深 度分布は、杭頭部で大きな曲げモーメントが発生 し、動的解析の曲げモーメント分布のモードと同 様の傾向にある。

図-5(b)にはB橋の橋台背面における自由地 盤の最大変位を示すが、Ac1層及びAo2層で変位 が大きく増加していることが確認できる。文献⁶⁾ では、杭頭部から1/β~1.5/β程度の範囲に土層 境界が存在し、かつ、その土層境界の上部土層が 下部土層より軟弱で、地表面に向かって地盤の振 動変位が急増する地盤条件の場合に、杭頭部の損 傷に対して地盤の振動変位の影響が大きくなる可 能性があることが示されている。なお、1/βは杭 と地盤の剛性比から決まる杭の特性長さである。 ここで、B橋の解析結果は上記の条件に該当する。 一方、A橋では地盤の振動変位の影響を大きく受 けたのは、杭頭より6m以上下の液状化層(As1 層)位置であり、上記の条件には該当しない。

以上より、B橋ではA橋と異なり、杭頭部付近 で地盤の振動変位の影響を大きく受けたため、杭 のせん断破壊に至ったと考えられる。また、B橋 の既製RC杭はせん断耐力がA橋の鋼管杭と比較 して小さいことも損傷に差が生じた要因として挙 げられる。

5. おわりに

東北地方太平洋沖地震において、比較的類似し た地盤条件および橋梁規模条件である2つの橋台 杭基礎の挙動を静的及び動的解析で再現し、挙動 の確認を行った。今回の解析において、杭基礎は 地盤の振動変位の影響が大きいことが確認され、 杭頭部付近で大きな地盤の振動変位が生じる条件 でせん断耐力が小さい既製RC杭の場合には注意 が必要であることが確認された。一方で、今回の 解析では一部で被災状況と乖離した計算結果も見 られた。このため、今後さらなる検討を行い、地 盤の振動変位の影響を精度よく推定できる解析手 法を確立することで、既設橋の合理的な評価につ なげていきたい。

最後に、本研究で対象とした橋梁の被災情報や 被災後に実施した各種調査結果及び強震記録等に 関して、道路管理者の皆様及び国土技術政策総合 研究所から貴重な情報を提供していただけたこと に感謝の意を表します。

参考文献

- (社)日本道路協会:道路橋下部構造設計指針 く い基礎の設計篇、1961.3
- Iai,S. ,Matsunaga,Y. and Kameoka,T. : Strain Space Plasticity Model for Cyclic Mobility, Soils and Foundations, Vol.32, No.2, pp.1-15,1992
- 3) (社)日本道路協会:道路橋示方書・同解説IV 下 部構造編、2012
- 4) 金子正洋他:平成23年(2011年)東北地方太平洋沖地 震による強震記録―土木構造物における加速度強震 記録(No.28)、高密度強震観測記録集(No.5)、地震 計ネットワーク観測記録集―、国土技術政策総合研 究所資料、No.726、2013.2
- 5) 森田年一他:液状化による構造物被害予測プログラムFLIPにおいて必要な各種パラメタの簡易設定法、 港研資料、No.869、pp.1~36、1997
- (独) 土木研究所:地震時の地盤の振動変位が道路 橋杭基礎に与える影響度と地盤条件の関係、土木研 究所資料第3919号、2004

田辺晶規

土木研究所構造物メンテ ナンス研究センター 交 流研究員 Akinori TANABE

土木研究所構造物メンテ ナンス研究センター 主 任研究員、博(工) Dr. Tetsuya KOUNO

土木研究所構造物メンテ ナンス研究センター 上 席研究員 Toshiaki NANAZAWA

土木研究所地質・地盤研究 グループ土質・振動チー ム、(併)構造物メンテナン ス研究センター 研究員 Shunsuke TANIMOTO