特集報文:頻発する大規模土砂災害に挑む

地震動が地すべり挙動に及ぼす影響

1. はじめに

近年、新潟県中越地震、岩手・宮城内陸地震、 東北地方太平洋沖地震などの大きな地震が発生し、 数多くの地すべり災害が引き起こされている。地 震による地すべりの発生原因として、地震動によ る斜面内の過剰間隙水圧の上昇¹⁾や、繰り返しせ ん断変位によるせん断強さの低下²⁾が指摘されて いる。また、地震による地すべりの発生には、地 震動の周期特性が影響する³⁾という指摘がある。 そこで、これらの指摘を踏まえ、地震動が地すべ り挙動に及ぼす影響を明らかにするために、地震 時の地すべり土塊のせん断挙動解明のための地震 動載荷試験及び斜面への入力地震動と斜面の振動 との関係を検討したので、それらの結果を示す。

2. 地すべり土塊の地震動載荷試験

地震時の地すべり斜面内における土塊のせん断 挙動を明らかにするために、地震により地すべり が発生した斜面から試料を採取し、地震動を載荷 した繰り返し三軸試験を実施した。

2.1 試料

試料は、平成23年東北地方太平洋沖地震で地 すべりが発生した3箇所(栃木県那須烏山市藤田 地区、福島県白河市北ノ入地区、同葉ノ木平地区) の各地すべりにおける斜面上部のすべり面付近か ら採取した攪乱試料である。

地すべり名	藤田	北ノ入	葉ノ木平
土粒子の密度(g/cm ³)	2.694	2.614	2.666
自然含水比(%)	80.7	94.1	87.9
礫分(2~75mm)(%)	0.0	0.0	0.0
砂分(0.075~2mm)(%)	18.3	4.9	2.8
シルト分(0.005~0.075mm)(%)	36.9	27.0	24.3
粘土分(0.005mm未満)(%)	44.8	68.1	72.9
最大粒径(mm)	0.850	0.850	0.425
50%粒径(mm)	0.0070	0.0016	0.0016
液性限界(%)	118.6	88.4	97.3
塑性限界(%)	51.1	49.2	40.9
塑性指数	67.5	39.2	56.4
地盤材料分類名	砂質火山灰質 粘性土	火山灰質 粘性土	火山灰質 粘性土

表-1 試料の物理試験結果

丸山清輝・石田孝司

表・1には、各試料の物理試験結果を示した。な お、繰り返し三軸試験では、礫分を取り除くため に425μmのフルイを通過させスラリー化させた 試料を用いた。

2.2 試験方法

供試体は、予備圧密した試料を整形して作成した。また、試験では、二酸化炭素と脱気水により 供試体の飽和化を行い、間隙水圧係数B≧0.95を 示す飽和状態を確認した。

表・1に示した藤田、北ノ入、葉ノ木平地区の地 すべり発生斜面は、現地調査等により地すべり履 歴がない斜面であると推定された。このため、採 取した試料が不攪乱の状態に近づくように、供試 体の過圧密比を2.0に設定した。また、せん断試 験では、地すべり発生斜面における地震による土 塊内の応力状態について検討するため、滑動力が 作用している状態での地震動載荷試験を行った。

表・2は、せん断開始時の各応力条件を示したも のである。試験では、滑動力が作用している状態 での圧密状態を再現するため、圧密条件は軸応力 に初期せん断応力を加えた異方圧密とした。なお、 圧密時には等方圧密後に初期せん断力を加えて異 方圧密状態にし、せん断試験時は過圧密比2.0の 状態にするため、圧密時の1/2の応力状態にして いる。

表-2 せん断開始時の応力条件

地すべり名	鉛直応力 _{のvc'} (kPa)	水平応力 _{の hc'} (kPa)	せん断開始時平 均有効主応力 (σ vc [:] +2 σ hc [:])/3 (kPa)	せん断開始 時主応力比 σ vc'/ σ hc'
藤田	150	75	100	2.0
北ノ入	150	75	100	2.0
葉ノ木平	166	67	100	2.5

図-1、2には、供試体に載荷した地震動を示した。供試体に載荷した地震動は、試料採取地最寄りの観測地のものを用いた。藤田地区の供試体には、図-1に示した東北地方太平洋沖地震動 TCGH13 N-S成分を、北ノ入地区と葉ノ木平地 区の供試体には図-2に示したFKSO16 N-S成分 をそれぞれ載荷した。

Effect of Seismic Wave on Landslide Activity

2.3 試験結果

図-5

図-3~5は、各地区の試験結果を示したもので ある。過剰間隙水圧は繰り返し軸差応力の増大 とともに増大し、繰り返し軸差応力が減少した 後でも最大値付近で推移している。繰り返し軸 差応力が最大となった付近から軸ひずみは急激 に増大しており、この時点で供試体が破壊され た。

地震動載荷試験結果 (葉ノ木平地区)

図-6~8には、各地区の供試体内における平均 有効主応力経路を示した。図中の直線は破壊線を 表している。平均有効主応力経路は平均有効主応 力の低下に伴って破壊線に近づき接触した後、破 壊線上に沿わず、それから離れている。この一連 の挙動は、繰り返し軸差応力がピークに達した後 に、供試体の破壊後のひずみの進行により破壊線

図-9 平均有効主応力減少比の経時変化(藤田地区)

図-10 平均有効主応力減少比の経時変化(北ノ入地区)

図-11 平均有効主応力減少比の経時変化

(葉ノ木平地区)

の勾配(φ')が低下していることを示すもので ある。

図·9~11には、平均有効主応力減少比の経時変 化を示した。平均有効主応力減少比とは、初期平 均有効主応力から現在の平均有効主応力までの減 少量を初期平均有効主応力で無次元化した指標で あり、1に近づくほど有効主応力はゼロに近く液 状化していることを示す。平均有効主応力減少比 の上昇は供試体の破壊前から生じており(せん断 強さの低下が生じている)、破壊後に急激な増加 を示し、大きな状態(せん断強さが低下した状態) は地震動が停止した後も続いていることが分かる。 このことにより、藤田、北ノ入、葉ノ木平の各現 場では、地震が収束した後も斜面の不安定化した 状態(せん断強さが低下した状態)が続いたため、 地すべりが発生したと考えられる。

3. 地震動の周期特性

斜面への入力地震動と斜面の振動との関係を検 討するために、地震動を最も特徴づけるといわれ ている周期特性について地すべり多発地での地震 動をもとに検討した。

3.1 解析方法

地すべり多発地での地震動として、新潟県上越 市安塚での国立研究開発法人防災科学技術研究所 強震観測網(K-NET安塚)における観測データ

表・3	検討に	用いた	地震	(K-NET安塚)
-----	-----	-----	----	-----------

-				
No.	地震名	発生年月日	発生時刻	計測震度
1	中越地震本震	2004.10.23	17:56	4.9
2	中越地震余震I	2004.10.23	18:01	3.7
3	中越地震余震Ⅱ	2004.10.23	18:32	5.5
4	能登半島地震	2007. 3.25	9:42	3.5
5	中越沖地震	2007. 7.16	10:13	4.8
6	東北地方太平洋沖地震	2011. 3.11	14:47	3.1
7	長野県北部地震	2011. 3.12	3:59	4.7

を用いた。安塚は新潟県東頸城地域に位置してお り、新第三紀の泥質岩が分布する第三紀層地すべ りの多発地である。

表-3は、検討に用いた地震について示したもの である。地震は、2004~2011年に発生した計測 震度3.1~5.5の7事例である。地震動は、国立研 究開発法人防災科学技術研究所の解析プログラム SMDA2を用いて、地震動の主要部分を含む観測 時間100秒のデータを抽出し、フーリエ・スペク トルを計算した。なお、フーリエ・スペクトルの 平滑化は、Hanningにより行った。また、水平 動フーリエ・スペクトルは、NS成分とEW成分 の二乗和の平方根とした。

3.2 解析結果

3.2.1 地震動の周期特性

表・3に示した地震の周期特性を検討するために、 水平動、上下動の各フーリエ・スペクトル、H/ Vスペクトル比をそれぞれ求めた。

図-12~14は、地震動の水平動、上下動の各 フーリエ・スペクトル、H/Vスペクトル比をそ れぞれ示したものである。なお、H/Vは水平動 と上下動のフーリエ・スペクトル比(以下「H/ V」とする)であり、地盤の硬軟や地震動の増幅 倍率との間に強い相関があるといわれている³⁾。 地震動の水平動及び上下動のフーリエ・スペクト ル(以下「水平動値」、「上下動値」とする)は、 地震毎に形状や振幅が異なっている。これは、地 震動の周期特性が地盤の応力の増大に伴う非線形 挙動や地震の規模により異なるためと考えられて いる⁵⁾。それに対してH/Vスペクトル比は、他の 観測地点と同様に形状、振幅とも地震によらず変 動幅が水平動や上下動に比べて小さくなっている 4)。これは、地震動の水平動、上下動の各フーリ エ・スペクトルよりH/Vスペクトル比の周期特 性の方が、観測地点の地盤特性をより強く反映す るためと考えられている5)。

図-15 には、水平動最大値と水平動最大値が発

図・13 地震動の上下動各フーリエ・スペクトル

図-14 地震動のH/Vスペクトル比

生した周期、その地震の計測震度との関係を示し た。周期が約4秒に位置する地震は東北地方太 平洋沖地震であり、この地震は他の6事例が内 陸型であるのに対して海溝型であるために、他の 地震とは異なった周期を示したものと考える。東 北地方太平洋沖地震のデータを除いた場合、水平 動の最大値は、計測震度の増大とともに大きくな る傾向がある。また、水平動最大値が発生した周 期は、水平動最大値の増大にともない小さくなる 傾向がある。

図-16 は、上下動最大値と上下動最大値が発生 した周期、その地震の計測震度との関係を示した ものである。上下動最大値は、その発生した周期、 その地震の計測震度との明瞭な関係は認められな い。また、図-15、16 からは、水平動や上下動の 最大値は、その発生した周期が同じ観測地点で あっても地震毎に異なっていることが分かる。

図-17 には、H/V最大値とH/V最大値が発生 した周期(以下「固有周期」とする)、その地震 の計測震度との関係を示した。H/V最大値は、 計測震度の増大にともない大きくなる傾向がある。

H/V最大値はほぼ 0.1~0.3 秒の範囲の周期で発 生しており、固有周期の変動範囲は水平動や上下 動の最大値が発生したものに比べて狭い。また、 固有周期は、各地震に関係なくほぼ一定の範囲内 に収まっていることが分かる。固有周期は地盤毎 にほぼ決まっており、地盤の固有周期がそこに入 力される地震動の卓越周期と一致した場合、共振 が起こり、地盤の振動が大きくなると考えられて いる³⁾。

図-18 は、各地震の固有周期における水平動値 /水平動最大値の値を示したものである。この値 は 0.1~1.0 を示しており、約 1.0 となった中越 地震では固有周期と水平動の最大値の発生周期が ほぼ同じであり、上下動に比べて水平動が特に大 きくなったことが分かる。それに対して、東北地 方太平洋沖地震ではこの値が 0.1 となっており、 固有周期での水平動より他の周期で発生した水平 動の方が大きかったことが分かる。この他、水平 動最大値は、固有周期以外で発生している場合が 多いことが分かる。

3.2.2 地震動の周期と地すべりの変動

地震動が地すべりの変動に及ぼす影響を調べる ために、地震動の固有周期と地すべり斜面に設置 されたパイプひずみ計の変動量との関係について 検討した。

3.2.2.1 検討に用いた地すべりの概要

検討に用いた柳原地すべりは、新潟県 上越市安塚区に設置されている国立研究 開発法人防災科学技術研究所強震観測網 K-NET 安塚の位置から南東方向に約 5.8km離れた山間部に位置している。また、 柳原地すべりの周辺には、地すべり地形 が数多く分布している。 本地すべりの規模は、長さ約450m、幅約70m、 斜面勾配約10~20°、移動層の厚さ約4~7mで あり、粘性土の地すべりである。また、基盤岩の 地質は、新第三紀の黒色泥岩である。

図・19には、柳原地すべりの主側線縦断面にお けるパイプひずみ計の設置位置を示した。パイプ ひずみ計の変動量は、降雨時に斜面上部では推定 すべり面より浅い軟質な地層で、斜面中間部と下 部ではすべり面付近で、それぞれ観測されている。 なお、検討に用いたパイプひずみ計は、斜面上部 に位置している。

図-19 柳原地すべり主側線縦断面における パイプひずみ計の設置位置

3.2.2.2 地震動の周期と地すべりの変動

表・4は、地すべり斜面に表・3で示した地震動が 入射した時の水平動値と、柳原地すべりの斜面上 部におけるすべり面でのパイプひずみ計の変動量 (以下「ひずみ変動量」とする)との関係を示し たものである。なお、ひずみ変動は柴崎ほかが示 した値⁶であり、中越地震と中越余震Ⅰ、Ⅱの後、

表・4 地すべり地における地震と地すべり変動との関係

地震名	水平動最大 値(cm/sec)	水平動最 大値発生 周期(sec)	固有周期(0.09sec) での水平動値 (cm/sec)	すべり面での パイプひずみ 計変動量(μ)
中越地震	28.1	0.3	3.1	
中越余震I	5.6	1.6	0.7	324
中越余震Ⅱ	25.7	0.3	2.2	
能登半島地震	6.9	1.3	0.3	-
中越沖地震	25.8	1.2	2.6	847
東北地方太平洋沖地震	41.8	4.0	0.4	-
長野県北部地震	21.3	0.2	4.0	2530

中越沖地震の後、東北地方太平洋沖地震と長野県 北部地震の後の各観測値である。また、地すべり 移動層の固有周期は、川邉が由比地すべり(静岡 県の泥質岩を起源とする風化岩すべり)で求めた データ³⁾を参考にして0.09秒とした。

ひずみ変動が示されている地震の水平動最大値 は、大きい方から中越地震、中越沖地震、中越地 震余震II、長野県北部地震の順になっている。ま た、ひずみ変動量は固有周期での水平動値が最も 大きい長野県北部地震が一番大きくなっている。 なお、柳原地すべり周辺では3月11日の東北地方 太平洋沖地震時には地すべりが多発していないの に対して、3月12日の長野県北部地震時には地す べりが多発している7。このことから、長野県北 部地震後に観測されたひずみ変動量は、東北地方 太平洋沖地震の影響によるものではなく、長野県 北部地震の影響によるものと考えた。

柴崎ほかは、長野県北部地震のひずみ変動量が 他の地震に比べて大きい値を示した原因として、 地盤の基本固有周期と加速度の卓越周期がほぼ同 じ値であったためと考えた⁶⁾。今回の検討結果か らも、地すべり斜面の変動には、移動層の固有周 期と同じ地すべり斜面に入射する周期の水平動値 が関係することが考えられる。

4. まとめ

地震動が地すべり挙動に及ぼす影響を明らかに するために、地すべり土塊の地震動載荷試験と地 震動の周期特性についての検討を行った。その結 果、地すべり土塊の地震動載荷試験結果からは、 平均有効主応力減少比の増加が供試体の破壊前か ら生じており(せん断強さの低下が生じている)、 破壊後に急激な増加を示し、平均有効主応力減少 比の大きな状態(せん断強さが低下した状態)は 地震動が停止した後も続いていることが分かった。 また、地震動の周期と地すべりの変動の検討結果 からは、地すべり斜面の変動には、移動層の固有 周期と同じ地すべり斜面に入射する周期の水平動 値が関係することが考えられた。

これらのことから、地震による地すべりの発生 機構として、以下のことが考えられる。すなわち、 地すべり斜面内に入射してくる地震動の最大値発 生周期と地すべり斜面の固有周期が一致した場合 に、斜面に大きな揺れが生じる。この大きな揺れ は、滑動力の増大と斜面内に高い過剰間隙水圧を 発生させる(土塊のせん断強さを低下させる)。 この状態(せん断強さが低下した状態)は地震動 が停止した後も続くことから、斜面が不安定化し、 地すべりが発生すると考えられる。

今後は、地震による地すべり発生機構を解明す るために、地震動を含めた地すべり動態観測を実 施し、さらに検討を進める必要がある。

謝 辞

今回の検討では、国立研究開発法人防災科学技 術研究所の震動観測データ及びその解析プログラ ムを利用させていただいた。ここに、感謝の意を 表する。

参考文献

- 佐々恭二、福岡浩、汪発武、王功輝:平成16 年新潟県中越地震により発生した再滑動地すべり 地における高速地すべり発生・運動機構、第44回 日本地すべり学会研究発表会講演集、pp.59~62、 (社)日本地すべり学会、2005年8月.
- 2) 熊崎直樹、鳥羽瀬孝臣、柏柳正之、秦野輝儀、水 橋勇太郎:地震時の地すべり面強度低下とこれを 考慮した斜面安定性評価、第37回岩盤力学に関す るシンポジウム講演集、pp.193~198、(社)土木学 会、2008年1月.
- 川邉 博:斜面表層の振動特性と不安定化、日本地 すべり学会誌、第42巻、第2号、pp.10~12、2005.
- 中村 豊:H/Vスペクトル比の基本構造、物理探査学会地震防災シンポジウム、pp.1~6、 2008/1/25.
- 5) 大熊祐輝、松岡昌志、山崎文雄、原田隆典:宮崎県における常時微動H/Vを用いた地震動の推定、 土木学会論文集、№ 696/I-58、pp.261~272、 2002.
- 6) 柴崎宣之、石井靖雄、阿部大志、片岡正次郎:地 震動の加速度・卓越周期が地すべり変動に与える 影響、第53回日本地すべり学会研究発表会講演集、 pp.17~18、平成26年8月.
- 丸山清輝、中村 明、野呂智之、ハスバートル: 平成23年3月12日 長野県北部を震源とする地震 により発生した斜面災害、砂防学会誌、Vol.64、 No.2、pp.39~44、2011.

土木研究所土砂管理研究 グループ雪崩・地すべり 研究センター 特任研究 員、博士(学術) Dr.Kiyoteru MARUYAMA

土木研究所土砂管理研究 グループ雪崩・地すべり 研究センター 上席研究 員 Koji ISHIDA