塩害により撤去されたPC橋の耐荷力評価

松沢政和* 木村嘉富** 花井 拓*** 本間英貴****

1. はじめに

高度経済成長期に建設された膨大な数の橋梁の 高齢化が進展する中で、様々な劣化要因による損 傷事例が報告されている。これらの損傷に対して 合理的かつ適切に維持管理を行っていくために、 検査技術や評価手法の確立が求められている。し かし、劣化損傷や変状の要因が多岐にわたるとと もに、橋梁の構造特性や周辺環境、交通量等に よっても耐荷性能や耐久性能に与える影響が大き く異なる。劣化損傷を適切に評価する手法を確立 していくためには、これらの劣化損傷等に関する データの蓄積が必要不可欠である。(独)土木研究 所では、劣化損傷の生じた実橋の実態や耐荷性能 を把握すべく、撤去された橋梁について非破壊検 査や載荷試験、解体調査を実施している。これら の取り組みを臨床研究と称し、検査技術や評価手 法の確立に向けて研究を行っている。

本論では、塩害により鋼材腐食の生じたポスト テンションPCT桁の載荷試験を実施し、せん断 耐荷性状に着目した耐荷力評価に関する検討結果 について報告する。

2. 撤去桁の概要

2.1 橋梁概要

表-1に本橋の主な橋梁諸元を示す。本橋は石川 県宝達志水町の主要地方道金沢田鶴浜線の相見川 を渡河する自歩道橋(能登海浜自転車道線)であ る。能登有料道路の本線(上り線)に隣接し、海 岸線より約90mの位置に架かる2連の単純ポスト テンションPCT桁橋である(写真-1)。

過去2度の詳細調査により塩害による鋼材腐食 により剥落や浮きが桁全体に確認され、はつり調 査において全PC鋼材8本のうち2本にて一部素線 破断が確認された。そのため、ライフサイクルコ スト(LCC)比較により架替えが優位と判断さ れ、供用から38年経過した後撤去された。

2.2 試験体概要

本載荷試験は第一径間の支間長19.2mのG1桁 を用いて実施した。本試験体の標準断面図を図-1 に示す。また、本研究にて実施した調査及び試験 項目を表・2に示す。なお、損傷状況調査以外の試 験は、載荷試験後に実施した。

表-1	橋梁諸テ	Ē
2A I		-

橋梁名	相見川海浜橋(自歩道)
架橋位置	石川県宝達志水町(海岸線より90m)
路線名	主要地方道 金沢田鶴浜線 (管理:石川県)
橋長·支間長	44.0m(支間長19.2m+23.24m)
橋梁形式	単純ポストテンションPCT桁橋
適用示方書	S43 PC道路橋示方書(竣工年より推定)
竣工年	昭和47年(1972年)
撤去年	平成22年(2011年)供用後38年経過

写真-1 撤去前の状況

図-1 標準断面図

表-2 調査及び試験項目

損傷状況調査	外観目視	
材料試験	コンクリート	圧縮強度試験
		割裂引張強度試験
		中性化深さ測定
		塩化物イオン測定
	鋼材	引張強度試験
		断面減少率
		質量減少率
載荷試験	中央:曲げ載荷、	桁端:せん断載荷

Evaluation of Load Carrying Capacity using Prestressed Concrete Bridge demolished because of Chloride Induced Deterioration

2.2.1 試験体の損傷状況調査

図-2に載荷試験前の損傷図を示すが、桁全体に 損傷が確認できるものの、桁の両側面及び起終点 にて損傷の程度が異なり、山側及び終点(橋台 側)の損傷が顕著であった。なお、載荷試験前に X線によるグラウト充填度調査を実施したが、上 縁定着部付近で一部未充填が確認されたものの、 比較的充填状況は良好であった。

2.2.2 材料試験結果

載荷試験後に実施したコンクリートの材料試験 結果の平均値を表-3に示す。当時の設計資料によ るコンクリートの設計基準強度40N/mm²に対し、 圧縮強度試験の平均値は58.9N/mm²であった反 面、静弾性係数は道路橋示方書に示されている値 に対し低い値となった。なお、鋼材に関しては PC鋼材及び鉄筋ともに規格値以上であった。

材料試験に用いたコアの中性化深さは表-4に示 すとおり、海側では中性化は確認されず、山側は 部分的に26mmまで進行している箇所もあるが、 平均値は10mm程度であった。

図-3に塩化物イオン濃度分布を示す。PC鋼材 位置における塩化物イオン濃度は、損傷の顕著な 終点側の下面が最も高く、約2.5kg/m³であった。 比較的健全な起点側では、PC鋼材位置では最大 でも0.3kg/m³程度(山側の側面)であった。山 側が高い要因としては、桁内側であるために桁外 側に比べ雨水等により付着塩分が洗い流されない ためと考えられる。また、特に山側や終点側では 表面付近の濃度が小さい傾向にあり、中性化によ る塩分濃縮*が生じたと考えられる。

図・4に終点側のPC鋼材にて破断が確認された 箇所における各鋼材の素線12本の断面減少率及 び質量減少率を示す。ここで、断面減少率は 50mmピッチにてノギスを用い計測した各試験体 全長30cmの平均値である。破断が確認された箇 所は全て終点側の桁端であり、破断した鋼材の配 置位置は最下段(PC6、PC8)及び下段より2段 目の山側(PC5)のPC鋼材であった。シースが 腐食損失しPC鋼材が複数個所で断続的に破断し ていたPC8の減少率が40%~70%と最も大きく、 PC5にて破断が確認された素線を除いて、PC5と PC6は概ね10%前後の減少率であった。

表-3 材料試験結果(コンクリート)

			試験値 標準値		値(道路橋示方書)	
圧縮強度(N/mm ²)		n ²)	58.9		40	
引張強度(N/mm ²)			3.16		2.69	
静弹性係数(kN/mm ²)			21.6		31.0	
	表-4 中性化深さ測定結果 (mm)					
圧① 圧②			圧③	割①	割②	割③
(海側) (山側		(山側)	(海側)	(海 側)	(山側)	(海 側)
最大	0	26	0	0	13	0

取八	0	20	0	0	10	0
最小	0	6	0	0	4	0
平均值	0	11	0	0	8	0

※「圧」は圧縮強度試験、「割」は割裂強度試験コアを示す。

図-4 断面減少率と質量減少率の関係

3. 曲げせん断特性に着目した載荷試験

3.1 載荷試験方法

載荷方法は図・5に示すとおり、支間中央にて曲 げ載荷及び各桁端にて1回ずつのせん断載荷(以 降、起点側桁端部:せん断載荷試験・1、終点側桁 端部:せん断載荷試験・2)の計3回の載荷試験を 行った。曲げ載荷試験は支間中央の残存プレスト レス量の確認を目的としてひび割れ発生荷重まで とした。せん断載荷試験のせん断スパン比a/dは、 斜めひび割れが確認されるように設定するととも に、人工的に鋼材を腐食劣化させた供試体を用い た既往の研究¹⁾と同程度(a/d≒3.0)とした。

3.2 載荷試験結果

図・6にせん断載荷試験における荷重-変位曲線 を示す。せん断載荷試験・1は、後述するせん断ひ び割れが確認された後、荷重-変位曲線にてPC 鋼材の降伏の予兆が確認されたため、せん断載荷 試験・2への影響を勘案し、500kNで除荷した。せ ん断載荷試験・2は、曲げひび割れ発生荷重までは せん断載荷試験・1と概ね同様の挙動を示したが、 以降はせん断載荷試験・1より大きな変形を呈しな がら、最大荷重575kNを計測した。なお、最大 荷重時にて圧縮側コンクリートの圧壊は生じてい ないが、最大荷重計測以降にPC鋼材の破断音が 数回確認されていることから最大荷重は曲げに相 当するものと推察される。

3.3 残存プレストレス量に関する考察

各載荷試験の曲げひび割れ発生荷重から推定し た残存プレストレスと表面損傷度(後述)を表-5 に示す。健全時の計算は、導入緊張力を当時の適 用示方書の導入時における許容引張応力度相当 (1.260N/mm²) として有効プレストレスを算出 した。ここで、コンクリートの圧縮強度及び引張 強度は材料試験結果を用い、弾性係数は圧縮強度 試験値から道路橋示方書にて設定した。また、表 面損傷度は各載荷区間(曲げ:等曲げ区間, せん 断: せん断スパン内) における上フランジを除い た桁の表面積に対する損傷面積(浮き・剥離の み)の比率とした。プレストレス減少率は部位に より異なり、PC鋼材の破断が確認されていない 起点側の桁端ではプレストレス減少率は比較的小 さく、良好なグラウトの充填によりコンクリート とPC鋼材との一体性が確保されていたためと考 えられる。また、プレストレス減少率とコンク リート表面の損傷度にある程度相関が確認された。

表-5	曲げひび割れ発生荷重による残存プレストレス
	の推定値と表面損傷度

	プレス	表面		
	健全 (計算値)	実験値	減少率	損傷度
曲げ載荷試験	1,568	1,188	24%	27%
せん断載荷試験-1	958	906	5%	0%
せん断載荷試験-2	970	738	24%	22%

※プレストレス力は各曲げひび割れ発生位置での推定値

3.4 各耐荷力に関する考察

各耐荷力を荷重に換算した計算値と実験値の比 較を表-6に示す。なお、各耐荷力の計算値は曲げ ひび割れ発生荷重より推定したプレストレス減少 率相当に鋼材断面が腐食していたと仮定して算出 している。

せん断ひび割れ発生荷重については、両せん断 試験ともに明確なせん断ひび割れが目視にて確認 できなかったため、既往の研究¹⁾にて概ねせん断 ひび割れ発生荷重を抽出できた一手法として、試 験体上下に設置した変位計の差が増大する荷重を せん断ひび割れ発生荷重(Pvcrexp)とした。せん断 ひび割れ耐力の計算値(Vercal)は、せん断補強鉄筋 を用いていないRCはりのせん断強度²⁾(Ve)、デコ ンプレッションモーメントをせん断スパンで除し たプレストレスによるせん断耐力増加分³⁾(Vpd)及 びプレストレスの鉛直分力(Vpv)の和とした。ま た、既往の研究¹⁾と同様にかぶり部分にもはく離 が生じず、一体となって抵抗したとして計算した。 せん断ひび割れ発生荷重においては、実験値が計 算値の8割程度となった。この結果に対して明確 な理由の解明には至っていないが、本来対象とす べきせん断ひび割れ発生荷重より小さい荷重値を 抽出した可能性や、せん断スパン内にてウェブ厚 が変化していることなどが要因として考えられる。 また、海外における曲げせん断ひび割れ発生時の せん断耐力評価式⁴⁾にはV_{pv}を考慮していないも のもあり、これに準じた場合には概ね実験値と計 算値が一致するが、海外の評価式やV_{pv}の取扱い に関する検証が十分ではなく、今後の課題である。

曲げ破壊耐力(Mucal)の算出に際しては、各材料 試験結果を用い、PC鋼材の降伏強度は引張強度 の93%⁵⁾とした。斜引張破壊耐力(Vucal)は、前述 のVercalを有効高にて算出し、それに圧縮斜材角 45度と仮定したトラス理論に基づくせん断補強 鉄筋負担分⁵⁾(Vs)の和とした。なお、Vsは該当す るせん断補強鉄筋の断面減少率測定結果を考慮し た値である。せん断載荷試験-2にて確認された最 大荷重は、曲げ破壊耐力の計算値とほぼ一致した が、今後解体調査にて当該部位における鋼材の実 断面減少率との相関を確認する予定である。

			せん断載荷試験-1	せん断載荷試験-2
封筥/店※1	せん断ひび割れ	$P_{Vcrcal}(1)$	$513 (377)^{*_2}$	$430 (324)^{*_2}$
可异他" (l-N)	せん断破壊	P _{Vucal} (2)	707	601^{*3}
(KIN)	曲げ破壊	$P_{Mucal}(3)$	702	572
実験値	せん断ひび割れ	$P_{Vcrexp}(4)$	387	351
(kN)	最大荷重	Puexp (5)		575
比率 (実験値/計算値)		$P_{Vcr}(4)/(1)$	$0.75(1.03)^{*_2}$	$0.82(1.08)^{*2}$
		$P_{Vu}(5/2)$	-	0.96
		P _{Mu} (5/3)	_	1.01

表・6 各耐荷力における実験値と計算値の比較

※1 計算値は自重による断面力を控除した値

※2()内はV_{pv}を考慮しない場合の値

※3 山側のせん断補強鉄筋の断面減少率測定:24%(海側:健全)

独立 行政法人 土木研究所構 造物メンテナンス研究セン ター橋梁構造研究 グループ 交流研究員 Masakazu MATSUZAWA

独立行政法人土木研究所構 造物メンテナンス研究セン ター橋梁構造研究グループ 上席研究員 Yoshitomi KIMURA

4. まとめ

実橋を用いた載荷試験結果から、得られた知見 を以下にまとめる。

- 本試験体において残存プレストレスは各部位 により異なり、外観の損傷度と残存プレスト レスとの関係にある程度相関が確認された。
- 2)本載荷試験にて実施したせん断ひび割れに着 目した検討においては、種々の要因により、 実験値と計算値に乖離が生じたと考えられる。 さらに、曲げせん断ひび割れ発生時のVpvの取 扱い等についても検証を行う必要がある。
- 3) せん断載荷時に確認された最大荷重は、プレ ストレス減少率相当に鋼材の断面減少が進行 していたと仮定した場合の曲げ破壊耐力の計 算値と概ね一致した。

謝 辞

本研究にあたり、本試験体の提供に快諾頂いた 石川県の関係各位をはじめ、本臨床研究にご協力 頂いた皆様に対し、ここに心より感謝の意を表す る。

参考文献

- (独)土木研究所:既設コンクリート道路橋の健全 性評価に関する研究、重点プロジェクト研究報告 書、2010
- 二羽淳一郎、山田一宇、横沢和夫、岡村 甫: せん断補強鉄筋を用いないRCはりのせん断強度式の再評価、土木学会論文集、Vol.372/V-5、pp.167~176、1986
- 3) 建設省土木研究所、プレストレストコンクリート 建設業協会:高強度コンクリート部材の設計法に 関する共同研究報告書、共同研究報告書第138号、 1995
- F・ソーコ:プレストレストコンクリート-1.基礎編、鹿島出版社、pp.38~42、1982
- 5) 日本道路協会:道路橋示方書・同解説 Ⅲコンク リート橋編、2012

花井 拓***

本州四国連絡高速道路株式 会社長大橋技術センター総 括・防食グループ(前 独 立行政法人土木研究所構造 物メンテナンス研究セン ター橋梁構造研究グループ 主任研究員) Taku HANAI

独立行政法人土木研究所構 造物メンテナンス研究セン ター橋梁構造研究グループ 主任研究員 Hidetaka HONMA