連続体モデルを用いた雪崩層厚と速度の算出 ~連続体モデルとフェルミーモデルの比較~

池田慎二* 伊東靖彦** 野呂智之*** 田中頼博**** 林 一成*****

1. はじめに

大規模な斜面においては、雪崩対策にあたって 雪崩予防柵等の発生区対策よりも雪崩防護工等の走 路・堆積区対策の方がコストや自然環境への影響な どにおいて有利な状況も多い。

しかし、現在日本で雪崩対策のために雪崩の到 達距離や雪崩層厚を求めるには、最大到達距離を与 える見通し角を経験則から求める手法(高橋の18 度法則¹⁾)や、開水路流れの理論を応用した単純な 1次元流体モデル(フェルミー(Voellmy)モデル ²⁾)が用いられているため、以下の懸案が生じてい る。

フェルミーモデルでは雪崩の速度vは

$$v = \sqrt{v_f^2 - (v_f^2 - v_0^2)e^{-2gS/fh}}$$
 $\vec{x}(1)$

と求められ、vfおよびv0はそれぞれ雪崩の終端速度 と初速度、Slt斜距離、*ξ*は乱流摩擦係数、hは雪崩 層厚、gは重力加速度である。ここで、雪崩の層厚 は、過去の雪崩災害調査からSが100m増加するご とにhが1m増加するように設定される³⁾。雪崩防護 工の高さは設計積雪深に雪崩層厚を加えて設計され るため、走路の長い斜面においては施設高が10m以 上の非常に大規模なものになる場合があり、コスト の増大が懸念されている。また、地形による層厚の 変化(開けた地形と谷状地形の違いなど)も考慮さ れていないため、現実よりも過大な層厚にもとづい た設計になっている場合もあることが予想される。

そこで、雪崩の速度や層厚分布の計算が可能な モデルについて、近年土石流や地すべりなどを対象 とした分野で発達が見られる数値シミュレーション 技術の雪崩に対する適用性について検討している。 張ら⁴によって提案された崩壊土砂に関する連続体 モデルを用い雪崩シミュレーションを開発し全層雪 崩事例の解析を行ったところ概ね雪崩の状況を再現 できた⁵⁾。本報告では、連続体モデルを用いた雪崩 対策施設の設計手法について検討するために、同一

 $\ensuremath{\mathsf{Estimation}}$ of avalanche height and speed by using continuum model

の雪崩事例について連続体モデルを用いた手法と フェルミーモデルを用いた手法の双方で解析を行い それらの結果を比較する。

2. 解析方法

2.1 解析の対象とした雪崩

対象とした雪崩は2011年2月に発生した湿雪全層 雪崩である(図-1)。この雪崩は斜面末端部の防護擁 壁を乗り越えて道路に到達し、幅約20m、長さ約 30m、最大高さ約5mの規模で道路周辺に堆積した。 雪崩発生区での崩落規模は幅約35m、長さ60~ 70m、積雪2~3m、崩落雪量は約5,000m³、道路へ の堆雪量は約2,500m³と推定されている。

地形データおよび積雪深については、該当地域の無雪期と積雪期に計測されたレーザプロファイラ (LP) データを採用した(メッシュサイズは1m× 1m)。積雪期のデータは雪崩発生の4日前に計測さ れたものである(図-2(a))。

ここでは、この雪崩斜面に対して雪崩防護施設 を設置すると想定し、設計に必要な雪崩諸元を算出 する。このため、道路脇に設置されている防護擁壁 を仮想的に取り除いた状態で雪崩の運動を再現する こととした。

図-1 解析の対象とした雪崩事例の概要

2.2 連続体モデルによる解析方法

張ら⁵によって提案された崩壊土砂に関する連続 体モデルを雪崩に適用した。このモデルは、応力の 内部散逸を考慮できないSavage-Hutterのクーロン 摩擦モデル⁶に代えて、土の内部クローン摩擦と間 隙流体のせん断応力および粘性を内部散逸損失とし て評価できるIversonら⁷によるクーロン混合モデ ルをもとにしている。また、深度平均理論を用いて 適切な粘性を再現するための三次精度風上スキーム を導入した定式化を行っている。その構成則につい て式(2)~(4)に示す。

$$C_{f}^{2} = \rho_{1}/(\rho_{1} - \rho_{0}), p_{i} = c_{i} \cdot \rho \cdot U^{2}, U = u^{2} + v^{2}$$
 $\overrightarrow{\mathbf{x}}(3)$

$$\frac{\partial h}{\partial t} + \frac{\partial (hu^2 + 0.5k_{ap}g_z h^2)}{\partial x} + \frac{\partial huv}{\partial y}$$

$$= g_x h - \frac{v_x}{\sqrt{u^2 + v^2}} \left[g_z + \frac{u^2}{\kappa_x} \right] h \tan \phi_{bed} \qquad \vec{x}(4)$$

$$- \operatorname{sgn}\left(\frac{\partial v_x}{\partial y}\right) h k_{ap} \frac{\partial hg_z}{\partial y} \sin \phi_{int}$$

ここに、h:雪崩の層厚、 ρ :雪崩の密度、 ρ_0 :衝撃前の雪崩の密度、 ρ_1 :衝撃後の雪崩の密 度、w(t):雪崩の幅、 C_f :洗掘係数、 c_i :衝撃係 数、 p_i :衝撃圧力、u,v:雪崩のx,y方向の速度、 g_x,g_y,g_z :重力加速度のx,y,z方向成分、 k_{ap} :主 動もしくは受動土圧係数、 κ_x,κ_y :地形曲率のx,y方向の半径、 ϕ_{bed} :底面摩擦角、 ϕ_{int} :内部摩擦角 である。式(2)と式(3)は連続の式、式(4)は運動量保 存式である。定式化の詳細については張ら⁵⁾を参照 されたい。

また、雪崩の停止条件は土塊の底面摩擦応力の 変化を考慮した手法(道上ほか)⁸にもとづき、底面 摩擦応力が流れに対して反対方向(通常の流下時) から逆方向に変化する計算ステップで停止すること としている。

雪崩の密度は、ざらめ雪の一般的密度である300 ~500kg/m³(前野・福岡, 1999)⁸⁾の中心値を採用し た。また、内部摩擦角φ_{int}および底面摩擦角φ_{bed}は、 図-2に示す地形の見通し角の上限値および下限値か ら想定した。図-3は図-2内のA-A'側線の断面図で ある。なお、本解析では、流下経路上に堆積してい る積雪の取り込みは考慮していない。

解析に用いたパラメータ等の解析条件を表-1にと

りまとめた。

表-1 連続体による解析に用いたパラメータ等

項目	パラメータ等
地形データ	積雪期DSM(H23.2.23撮影)
積雪深	積雪期DSMと無雪期DEMの差分
雪崩のすべり面	発生区の積雪深と一致(全層雪崩)
雪崩の密度 ρ	400kg/m ³
内部摩擦角 φ int	30°(見通し角の上限)
底面摩擦角 φ bed	25°(見通し角の下限)

2.3 フェルミーモデルによる解析方法

フェルミーモデルについては、「集落雪崩対策工 事技術指針(案)本編」³⁾に記載された方法に従っ た。フェルミーモデル自体では雪崩層厚を算出でき ないので上記の指針案にしたがい流下距離100mに 対し雪崩層厚が1mの割合で増加することとした(以 降この手法を従来手法と呼ぶ)。なお、フェルミー モデルによる解析に用いた各パラメータは表-2に示 した通りである。 表・2 フェルミーモデルによる解析に用いたパラメータ

項目	パラメータ等		
地形データ	積雪期DSMを基に作成した縦断地形		
雪崩発生層厚	2.5 m (積雪期DSMと無雪期DEMの差分2		
$h_0(m)$	~3mの中間値に設定)		
雪崩流下層厚 h(m)	$h=h_0+S/100$		
	S:斜距離(m)		
乱流摩擦係数 <i>ξ</i>	500(m/s ²) (全層雪崩の一般的な値である		
	400~600(m/s ²⁾⁶⁾ の中間値)		
動摩擦係数 μ	初期值:0.6		
	$\mu = -0.01 V + 0.6$ (0 $\leq V < 10$)		
	$\mu = 5/V (V \ge 10)$		
	V:雪崩速度(m/s)		

3. 解析結果

ここでは、雪崩防護施設の設計諸元として重要 な雪崩速度、雪崩層厚、雪崩流下範囲の解析結果に ついて述べる。また、道路近傍(実際に防護擁壁が 設置されている箇所)に防護施設を設置することを 想定し、設計諸元を算定することとした。

3.1 雪崩速度

雪崩速度の解析結果を図-3および表-3に示す。双 方の解析結果において速度のピークの位置や絶対値 は異なるものの、全体的な速度の変化傾向は類似し ていることがわかる。

しかし、フェルミーモデルによる解析結果では、 速度の変化は斜面勾配の変化に伴って緩やかに変化 しているのに対し、連続体モデルによる解析結果で は、勾配の変化のみでなく谷幅の変化の影響を受け て頻繁且つ急激に変化している。

連続体モデルによる施設設置個所の雪崩速度の 計算結果は7.7m/sであり、フェルミーモデルの 23.6m/sの1/3であった。これは施設を設計する上で は大きな差異といえる。

3.2 雪崩層厚

雪崩層厚の解析結果を図-3および表-4に示す。従 来手法では地形とは全く関係なく100mの流下距離 に対して1mの割合で層厚が一定に変化しているの に対し、連続体モデルでは、谷幅の変化に合わせて 層厚が変化していることがわかる。

また、雪崩末端付近においても従来手法では雪 崩層厚が増加し続けるのに対し、連続体モデルでは、 谷の広がりに伴う雪崩の幅の増加や流下途中の堆積 による雪崩量の減少を再現しているので、雪崩層厚 は徐々に減少し最終的には0mとなる。連続体モデ ルによる施設設置個所の雪崩層厚の計算結果は 2.3mであり、従来手法の5.1mよりも2.8m小さい。 これは、防護施設の高さを設計積雪深 +雪崩層厚 とした場合、従来手法では9.2mとなるのに対し、 連続体モデルでは、6.9mとなる(ここでは仮に雪崩 発生時の積雪深4.1mを設計積雪深とした)。

表-3 速度の解析結果

	フェルミーモデル	連続体モデル
最大速度	24.3 m/s	56.1 m/s
平均速度	15.5m/s	8.0 m/s
施設設置個所速度	23.6 m/s	7.7 m/s

表-4 雪崩層厚の解析結果

	フェルミーモデル	連続体モデル
最大層厚	5.9 m	4.6 m
平均層厚	4.2 m	2.5 m
施設設置個所層厚	5.1m	2.3 m

3.3 雪崩流下範囲

フェルミーモデルにおいては、流下範囲を算出 することはできないため地形状況や樹木に残った雪 崩の痕跡等を基に経験的に設定することになる。

これに対し連続体モデルでは、図-4、図-5に示し た通り平面図上に雪崩速度と層厚を再現することが できる。これらを基に保全対象が許容可能な雪崩衝 撃力や層厚を勘案して防護施設の幅と位置を決定す ることができる可能性がある。

図-6 雪崩最大速度分布図

4. まとめと今後の課題

雪崩対策工(減勢・防護工)の合理的設計手法を検 討するために、連続体モデルと現在日本において一 般的に使用されているフェルミーモデルを用いて雪 崩対策施設の設計諸元の算出を試みた。

解析した事例において、連続体モデルによる計算結果は、フェルミーモデルの計算結果と比べると 速度は33%、雪崩層厚は60%となった。これらの差 異は、施設の設計条件設定においては大きなもので あり、連続体モデルを用いることにより、施設規模 を縮小でき、コスト、環境負荷の軽減へ大きな効果 を得られる可能性があることが示された。ただし、 従来の手法によるものよりも施設規模を縮小するこ とは、安全面では慎重を要するものである。このた め、今後複数の事例解析を行うと共に模型実験等の 活用も含め、モデルの精度・信頼性について更なる 検証と改善を行う必要がある。また、運動中の雪崩 が雪面から取り込む雪の量や運動中に堆積する雪の 量と流下中の雪崩の密度変化の再現は重要な課題で あるが、これらを解決するにはフィールドでの雪崩 観測の高度化に取り組んでいく必要がある。

参考文献

- 1) 高橋喜平:「雪崩の被害(雪崩に関するシンポジウム 講演と討論[2])」、雪氷、22(1)、pp.7~9、1960
- 2) Voellmy, A. : Uber die Zerstorungskraft von Lawine. Schweiz. Bauztg. 73, 1955.
- (社)雪センター:集落雪崩対策工事技術指針(案) 本編、1996.
- 4) 張馳、吉松弘行、岩堀康希、阿部真郎:数値解析に よる崩壊土塊の到達範囲予測、日本地すべり学会誌、 Vol.41、No.1、pp.9~17、2004.
- 5) 張馳、伊東晴彦、池田慎二、田中頼博、林一成、野 呂智之、藤井登、阿部真郎、石井靖雄、伊藤陽一: 連続体モデルによるシミュレーション技術の雪崩に 対する適用性の検討、第27回寒地技術シンポジウム、 寒地技術論文・報告集(CD-ROM)、2011.
- Savage, S. B. and Hutter, K. : The motion of a finite mass of granular materials down a rough incline. J.Fluid Mech., 199, pp.177-215, 1989.
- Iverson, R. M. and Denlinger, R. P. : Flow of variably fluidized granular masses across three dimensional terrain, I Coulomb mixture theory. Jour. of Geophysical Research, Vol.106, No.B1, pp.537-552, 2001.
- 道上正規、宮本邦明、片嶋啓介、植村槙:土塊の運 動機構と1次元数値計算法、水工学論文集、42、 pp.925~930、1998.
- 前野紀一、福岡正巳:基礎雪氷学講座第I巻、雪氷 の構造と物性、古今書院、160p、1999.

独立行政法人土木研究
 所つくば中央研究所土
 砂管理研究グループ雪
 崩・地すべり研究セン
 ター 専門研究員、博
 (理)
 Dr. Shinji IKEDA

独立行政法人土木研究
 所つくば中央研究所土
 砂管理研究グループ雪
 崩・地すべり研究セン
 ター 主任研究員
 Yasuhiko ITO

独立行政法人土木研究 所つくば中央研究所土 砂管理研究グループ雪 崩・地すべり研究セン ター 上席研究員 Tomoyuki NORO

奥山ボーリング株式会 社技術開発室 東京事 務所課長 Norihiro TANAKA

奥山ボーリング株式会 社技術開発室 東京事 務所主任 Kazunori HAYASHI