特集:土木材料の信頼性向上に向けて

X線CTスキャナを用いたアスファルト 混合物内部の品質評価手法の開発

谷口 聡* 西崎 到** 大谷 順***

1. はじめに

現在、X線CT(Computed Tomography)スキャ ナは医療用のみならず、金属、自動車、航空、電 気・電子等に関わる材料や製品の非破壊検査等に 使用されている。土木材料においても品質評価や 破壊メカニズムの解明等を行う有効な手段として 期待される。

土木研究所では熊本大学と連携してアスファル ト混合物のX線CTによる評価研究を実施してい る。今回、アスファルト量及び混合物種類の異な るマーシャル安定度試験用供試体を用いてX線 CTによる品質評価の研究を実施した。CT画像に よるアスファルト混合物内の状況の把握及びCT 値を用いた品質評価を実施した結果について報告 する。

2. X線CT

2.1 X線CTの原理

本研究で用いた産業用X線CTスキャナ(写真-1) は医療用とは異なり、X線発生器及び検出器が固 定され、供試体が回転する機構となっている(図-1)¹⁾。X線CTの原理は、様々な方向から「影絵」 を測定し、PCでデジタル処理を施すことにより 供試体内部の各点のX線吸収係数(単位長さあた りのX線吸収量)を連立方程式で解き、それを画 像の濃淡で表示する。X線吸収係数は密度の高い 材料ほど大きく、密度の低い材料ほど小さい傾向 があるため、CT画像の濃淡は供試体の密度の違 いを表すことができる。

写真-1 X線CTスキャナ(熊本大学)

Quality evaluation of asphalt mixture using X-ray CT scanner $% \left({{{\rm{T}}_{{\rm{T}}}}_{{\rm{T}}}} \right)$

図-2 ボクセルの概念

2.2 ボクセル

図-2に示すようにCT画像を構成する最小要素 は「ボクセル」と呼ばれる²⁾。これは、2次元画 像におけるピクセルにX線ビーム厚を加えたもの である。ボクセルはピクセルと同様、画像の濃淡 等を示す情報を持っている。

2.3 CT値

式(1)で示されるCT値はボクセルが持つ画像の 濃淡等の情報を数値化したものである¹⁾。CT値は 密度の高い材料ほど大きく、密度の低い材料ほど 小さくなる傾向がある。

ここに、μ: X線吸収係数、μw: 水のX線吸収係数、K: 定数(通常、K=1,000)

アスファルト混合物のCT値は、X線の吸収を もとに算出され、吸収量は骨材、アスファルト+ 石粉、空隙の構成比によって変化する³⁾。すなわ ち、骨材の量が多ければX線の吸収は大きく、 CT値も大きくなり、空隙の量が多ければX線の 吸収量は小さく、CT値も小さくなる。

図·3 アスファルト混合物におけるPタイル法の概念

表-1 実験計画表

混合物の	アスファル	アスファルト量(%)				
種類	トの種類	4.5	5.0	5.5	6.0	6.5
密粒度	ストアス	1	2	3	4	5
粗粒度	ストアス		6			
ポーラス	РМА Н		(7)			

①~⑦:実験番号
 密粒度:密粒度アスファルト混合物
 粗粒度:粗粒度アスファルト混合物
 ポーラス:ポーラスアスファルト混合物
 ストアス:ストレートアスファルト
 PMAH:ポリマー改質アスファルトH型

2.4 しきい値

アスファルト混合物の出力画像から素材の構成 を特定するためには、CT値のしきい値を設定す る必要がある。今回のアスファルト混合物のX線 CT撮影においては、各素材の体積率が既知であ るためPタイル法4)を用いた。

図・3は典型的な密粒度アスファルト混合物のヒ ストグラムである。Pタイル法は図・3中の混合物 の空隙、アスファルト+石粉、細骨材、粗骨材の 面積比率(S₁/S~S₄/S)と、撮影されたアスファル ト混合物供試体の空隙、アスファルト+石粉、細 骨材、粗骨材の体積比率が同じになるようにしき い値を決定する方法である。具体的な計算手法に ついては谷口らの文献³⁾を参照されたい。

3. アスファルト混合物

今回の試験では、表・1に示す実験計画表に基づ き、密粒度アスファルト混合物(以下、密粒度)、 粗粒度アスファル混合物(以下、粗粒度)、ポーラ スアスファルト混合物(以下、ポーラス)について 実施した。今回用いたアスファルトの性状を表・2 に、混合物の空隙、アスファルト+石粉、細骨材 及び粗骨材の体積率と密度を表・3に示す。

表・2	アス	、ファ	・ルト	の性状
-----	----	-----	-----	-----

	ストアス	PMA H
15°C密度(g/cm ³)	1.041	1.024
25°C針入度(0.1mm)	65	66
軟化点(°C)	47.6	89.2
60°C粘度(Pa·s)	$1.94 x 10^{2}$	$1.42 \mathrm{x} 10^5$
180°C動粘度(mm²/s)	71	542

表-3 アスファルト混合物の体積率と密度

		宓 庻			
No.	空隙	アスファル ト+石粉	細骨材	粗骨材	చ 及 (g/cm ³)
1	6.5	14.1	32.2	47.2	2.349
2	5.6	15.3	32.1	47.0	2.360
3	4.0	16.6	32.2	47.2	2.388
4	3.6	18.0	32.3	47.1	2.393
5	1.9	19.0	32.1	47.0	2.398
6	4.8	15.4	19.3	60.5	2.381
$\overline{7}$	18.8	13.2	7.7	60.3	2.024

図-4 X線照射位置

4. X線CT撮影

供試体は円柱状であり、直径はマーシャル安定 度試験用のものと同じ101.6mm、高さは密粒度、 粗粒度が68.7mm、ポーラスが61.2mmであった。

X線CT撮影はX線管電圧300kV、ビーム厚1mm、 ボクセルサイズ0.073×0.073×1mm³で実施した。 また、X線照射位置は図-4のとおり設定した。

なお、供試体の撮影は初めにアスファルト量を 変化させた供試体No.①~⑤について実施し、次 にアスファルト量が5%のNo.②、⑥、⑦の二度に 分けて実施した。

5. 結果と考察

中央断面(密粒度及び粗粒度=34.3mm,ポーラ ス=30.6mm)のCT画像を図-5に示す。CT画像は アスファルト混合物内部の骨材の形状や空隙の分 布を鮮明に表すことができる。また、アスファル ト量が増加するにしたがって空隙(色の濃い部分) が減少する様子や、混合物の種類の違いを鮮明に 表すことができる。

CT

值 1000

図-6 アスファルト量が変化した場合の CT値ヒストグラム(5断面平均)

5.1 アスファルト量の変化

アスファルト量が変化した場合の5断面平均CT 値のヒストグラムを図-6に示す。これより、アス ファルト量の増加に伴って双峰性が明確に現れる ことが確認できる。また、アスファルト量の増加 に伴って、CT値が約1,000より小さい部分のボク セル数が少なく、CT値が1,000より大きい部分の ボクセル数が多くなる傾向にある。

2.4により計算されたアスファルト量が変化した場合の5断面平均しきい値を図-7に示す。しきい値1(T₁)はアスファルト量5.0%にピークに達し、しきい値2(T₂)はアスファルト量の増加とともに増加する傾向があり、しきい値3(T₃)はアスファルト量が変化してもほとんど一定である。

 アスファルト量
 アスファルト量
 アスファルト量

 =4.5%
 =5.5%
 =6.5%

 ● 空隙
 アスファルト+石粉

図-8は図-7のしきい値をもとに作成した中央断 面の四値化画像である。この画像から、アスファ ルト量の増加に伴って空隙の領域が減少し、アス ファルト+石粉の領域が増加することがわかる。

図・10 混合物の種類が変化した場合の四値化画像

5.2 混合物の種類の変化

混合物の種類が変化した場合の5断面平均CT値 のヒストグラムを図-9に示す。密粒度の場合とは 異なり、粗粒度、ポーラス共に-1,000~-800付近 でピークが発生しており、空隙の影響が顕著に出 たものと考えられる。また、密粒度にあった双峰 性が、粗粒度、ポーラスに行くにしたがってCT 値が1,200付近、すなわち細骨材のピークが崩れ る傾向がある。 混合物の種類が変化した場合の中央断面におけ る四値化画像を図-10に示す。密粒度は小さな空 隙が点在している一方、粗粒度は所々に大きな空 隙が存在している。ポーラスは細骨材がほとんど なく、粗骨材がアスファルトによって結合されて いる様子がわかる。

6. まとめ

X線CT撮影により得られたCT画像および四値 化画像は空隙、アスファルト、骨材の分布を表現 できることがわかった。また、CT値ヒストグラ ムは、混合物の特性を顕著に表すことができた。 X線CTはアスファルト混合物の品質評価に非常 に有効な手段であると考えられる。今後は、プラ ントコアと現場コアの比較等、現場におけるアス ファルト混合物の品質評価の検討を行っていく予 定である。

参考文献

- 大谷順、尾原祐三、菅原勝彦、椋木俊文:地盤工 学における産業用X線CTスキャナーの適用、土と 基礎、第48巻、第2号、pp.17~20、2000.
- 2) 菊池喜昭、水谷崇亮、永留健、畠俊郎:マイクロ フォーカスX線CTスキャナの地盤工学への適用性 の検討、港湾空港技術研究所資料第1125号、2006.
- 谷口聡、小川慧一郎、大谷順、西崎到:X線CTを 用いたアスファルト舗装材料の定量的評価に関す る研究、土木学会論文集E1(舗装工学)、第67巻、 第3号、2011.
- 高木幹雄、下田陽久:新編画像解析ハンドブック、 東京大学出版会、2001

独立行政法人土木研究所つくば 中央研究所材料資源研究グルー プ新材料チーム 主任研究員 Satoshi TANIGUCHI

独立行政法人土木研究所つくば 中央研究所材料資源研究グルー プ新材料チーム 上席研究員、 博(工) Dr. Itaru NISHIZAKI

大谷 順***

熊本大学大学院自然科学研究科 社会環境工学専攻、Ph.D、教授 Prof. Jun OTANI