特集:既設構造物の耐震補強技術

強震動を受けた上路式鋼アーチ橋の耐震補強対策の効果分析

1. はじめに

2007年7月16日に発生した新潟県中越沖地震は 新潟県および長野県において震度6強が観測され る強い地震であった。本地震では、原子力発電所 への影響や大規模な斜面崩壊などの被害が発生し た。道路橋については、従来の地震において比較 的よくみられた支承部の損傷や橋台部の取付け盛 土の沈下による段差、軟弱地盤上の橋台の移動な どが生じたことが報告されている¹⁾。

また、耐震補強が実施された橋が強震域に存在 し、重大な損傷を生じなかったことも報告されて いる。計測機器等は設置されていなかったため、 実際の地震における挙動に関するデータは得られ ていないが、耐震補強効果が実際の地震によって 検証された貴重な事例である。

そこで本研究では、新潟県中越沖地震において 強震域に存在した上路式鋼アーチ橋を対象に、そ の耐震補強効果を分析するために地震応答解析を 行った。本文では、その結果を報告する。

2. 解析対象とした橋と地震による損傷

解析の対象としたのは、写真-1、図-1に示す上 路式鋼アーチ橋である。1965年に竣工し、アー チ部のメインスパンが120 m、アーチライズが23 mの鋼張出式2ヒンジ逆ローゼ橋であり、橋の両 端のアプローチ部にはスパン38 mのゲルバー鋼 単純げた (ゲルバースパン= 32 m) が架かって いる。橋長は197 m、幅員は7.5 mである。本橋 は設計水平震度0.2を用いた震度法により耐震設 計された。

下部構造は、両端橋台は半重力式と控え壁式で、 基礎は直接基礎、杭基礎である。アーチ基部は直 接基礎により支持されている。アーチリブは高さ 1.5 m、幅0.75 mの箱形断面である。鋼板には SM490材が用いられ、鋼板の厚さはクラウン部 では上下面が19 mm、左右面が10 mmであり、

Dynamic analyses for seismically retrofitted steel arch bridge that affected by strong earthquake

堺 淳一* 運上茂樹**

写真-1 解析対象橋梁

アーチ基部では上下面が25 mm、左右面が10 mmである。

本橋は、レベル2地震動によりアーチ基部の支 承部に深刻な損傷が生じる可能性があること、 アーチリブに局部座屈が生じる可能性があること、 端支柱に降伏を超える応答が生じる可能性がある こと等から、兵庫県南部地震以後に図-2に示すよ うにアーチ基部の固定化、アーチリブへの軽量コ ンクリート充填、端支柱基部へのコンクリート充 填および端支柱へのブレース材の設置、ゲルバー ヒンジ部の連続化、アーチクラウン部の補強、落 橋防止構造の設置を補強項目とした耐震補強が 2000年から2001年にかけて実施された。耐震補 強設計においては、アーチ橋の安定性に影響を及 ぼさない程度の損傷は許容しながら、本橋に対し て実際に施工可能な補強対策を選定している。た とえば、アーチリブには許容モーメントまでの応 答を考慮している。本補強により、アーチリブの 重量は補強前の1600 kNから約5.7倍の8600 kN に増加し、橋全体としては重量が1.5倍となって いる。

図-2 解析対象橋梁の耐震補強の概要

表・1 アーチリブの許容曲げモーメント

	クラウン部(kNm)		基部(kNm)	
	橋軸方向	直角方向	橋軸方向	直角方向
補強前	5860	2382	6661	2229
補強後	11508	6137	14836	7148

表・2	固有值解析結果	
	(a) 補強前	

モード	ド 固有周期 有効質量率 (%)		
次数	(sec)	橋軸方向	直角方向
1	1.596	0	79.4
2	0.839	0	0
3	0.780	54.9	0
4	0.479	0	4.8
5	0.423	0	0

	1.11	34	4-	۰.
	依	5曲	E H)

(b

モード	固有周期	有効質量率 (%)		
次数	(sec)	橋軸方向	直角方向	
1	1.159	0	66.2	
2	0.757	51.6	0	
3	0.575	0	0	
4	0.505	0	0	
5	0.475	0	0	

新潟県中越沖地震による被災としては、上部構 造では、ジョイント部の衝突の痕跡が確認された。 アーチ部においては、アーチリブの一部の横構の ガセットプレートに座屈変形が生じたが、アーチ リブの主部材には特段の変状、損傷は報告されて いない。また、これらの他には親柱の損傷や橋台 背面土の沈下による段差も報告されている。

3. 解析モデルと解析条件

本橋に対する耐震補強効果を分析するために、 補強前後のモデルに対して地震応答解析を行った。 なお、本研究では、主耐震部材であるアーチリブ の挙動に着目することとした。補強前の構造系で は、部材や補剛板の座屈や降伏、支承部の損傷に 伴う非線形挙動が生じることが想定されたが、座 屈後の挙動の評価は対象にしないこととし、解析 ではアーチリブを線形部材としてモデル化した。 このほかの部材もすべて線形部材としてモデル化 した。一方、補強後については、コンクリート充 填を考慮し、アーチリブをバイリニアの履歴特性 を有する非線形はり要素でモデル化した。アーチ リブに作用する軸力は変動するため、この影響を 適切に見込むことが必要であるが、ここでは簡単 のために、死荷重による初期軸力を考慮し、変動 する軸力が曲げ履歴特性に及ぼす影響は考慮して いない。この他、主桁、端支柱、支柱にも非線形 性を考慮した。その他の部材は線形部材としてモ デル化した。

また、両モデルとも簡単のために幾何学的非線 形の影響は考慮していない。

アーチクラウン部およびアーチ基部を例に補強 前後の許容曲げモーメントを示した結果が表-1で ある。ここで、補強前に関しては部材の全体座屈 よりも局部座屈が生じるモーメントの方が小さ かったため、局部座屈が生じるモーメントを許容 曲げモーメントとして示している。なお、局部座 屈に対する許容応力度としては、降伏限界までを 考慮することとして、許容応力度の割増し係数 1.7を用いて許容曲げモーメントを算出した。

これによれば、アーチクラウン部の許容曲げ モーメント(座屈モーメント)は橋軸方向、直角 方向に対してそれぞれ5860 kNm、2382 kNmで ある。一方、コンクリート充填による補強後には、 これらがそれぞれ11508 kNm、6137 kNmとなる。

表-2は補強前後のモデルに対する固有値解析結 果をまとめたものである。このうち、橋軸方向、 直角方向の応答がそれぞれ卓越するモードの固有

図・3 主要振動モード

振動モードを図-3に示す。1次のモードはいずれ のモデルでも直角方向の変形が卓越している。固 有周期は、補強前では1.6秒に対し、補強後には 1.16秒となり、アーチ基部の固定化やアーチリブ に対するコンクリート充填により橋全体系の剛性 が高まったことが分かる。橋軸方向の応答が卓越 するのは、補強前後に対してそれぞれ3次モード、 2次モードであり、固有周期は0.78秒、0.76秒と 近い値となっている。

地震応答解析では、2007年新潟県中越沖地震 において実際に生じた挙動を推定するために、架 橋地点近傍の観測記録を用い、水平2方向+上下 方向の3方向成分を同時に入力することとした。 記録としては、国土交通省が設置している米山 (道路)気象観測所において観測された地震記録 を用いた。なお、本観測点は対象橋梁からは直線 距離にして4.5 km程度離れている。入力地震動 は橋軸方向、橋軸直角方向の入力となるように角 度補正した。解析に用いた記録の加速度の時刻歴 と加速度応答スペクトル(減衰定数=5%)を道 路橋示方書の設計スペクトル2)と比較した結果を 図・4に示す。記録の継続時間は290秒間であるが、 ここでは、主要動付近の30秒間を示している。 最大加速度は橋軸方向、直角方向、上下方向に対 してそれぞれ5.95 m/sec²、5.61 m/sec²、4.52 m/sec²である。水平方向の地震動は、いずれも固 有周期0.25秒付近に20 m/sec²を超えるピークを 有するが、短周期成分が卓越した地震動である。 本橋の卓越周期付近における入力地震動の応答ス

図・6 補強後のモデルにおいて応答変位が最大時の変形図

ペクトルは2.5~8.6 m/sec²程度であり、橋軸方 向の地震動は道路橋示方書の設計スペクトルより も小さいが、直角方向の地震動はこれよりも大き く、道路橋示方書に規定される地震力と同程度か それより大きな地震力であった。

4. 耐震補強効果の分析

図-5にアーチ中央の桁上における応答加速度、 応答変位の補強前後のモデルに対する比較を示す。 また、図-6には補強後のモデルに対する解析にお いて、各方向に最大応答変位が生じた時刻の変形 図を示している。補強後のモデルに対する解析結 果より、本橋は新潟県中越沖地震の際に、橋軸方 向には最大で70 mm程度、直角方向には500 mm 程度の応答変位が生じたと推測される。

補強前後で比較すると、応答加速度は、補強前 に比べて補強後には30~40%増加している。こ れは、耐震補強により橋の剛性が増加したためと

図-8 アーチリブ部の最大応答曲げモーメントと許容曲げモーメント

考えられる。応答変位は、橋軸方向には20%近く 小さくなり、直角方向には30%大きくなった。な お、補強前は弾性挙動したと仮定する場合を比較 したものであり、非線形挙動を考慮すると補強前 の変位はさらに大きくなると考えられる。

図-7にアーチリブの主要な点における応答曲げ モーメントを示す。ここには、アーチ基部付近と クラウン部付近の応答を例として示す。こうした 結果から、最大応答曲げモーメントを抽出し、こ れを許容曲げモーメントと比較した結果を図-8に 示す。ここでは、補強前に関しては局部座屈モー メントと、補強後に関しては降伏曲げモーメント とそれぞれ比較している。これによれば、補強後 のモデルに対する解析結果より、本橋には新潟県 中越沖地震の際に、アーチクラウン部において橋 軸方向の降伏曲げモーメントの91%に相当する曲 げモーメントが生じたこと、アーチ基部付近にも 橋軸方向、直角方向に対して降伏曲げモーメント のそれぞれ75%、65%程度の曲げモーメントが生 じたことが推定された。なお、本解析では死荷重 による初期軸力のみを考慮した解析を行ったが、 アーチ基部では初期軸力の6.6 MN(圧縮)から、 27.6 MN(圧縮)~13.5 MN(引張)の間で、 アーチクラウン部では初期軸力の2.6 MN(圧 縮)から、14.5 MN(圧縮)~8.3 MN(引張) の間で、軸力が変動しており、この影響により アーチリブは降伏した可能性もある。これについ ては軸力変動の影響を考慮した分析検討が必要で ある。

また、リブ以外の部材では、クラウン部付近の 主桁に降伏モーメントを多少上回る応答が生じた ことが推定された。端支柱については、橋軸方向、 直角方向のいずれの方向に対しても、降伏耐力の 50%程度の応答が生じた。

補強前には、最大応答はアーチクラウン部で生 じており、その値は座屈モーメントを40%近く上 回っている。アーチ基部は橋軸方向にはヒンジの ため、曲げモーメントは生じないが、アーチ基部 から1つクラウン部側の支柱の基部に相当する箇 所において4000 kNm程度の曲げモーメントが生 じている。直角方向にはアーチ基部で2200 kNm と座屈モーメントとほぼ同等の応答が生じる。ま た、アーチ基部の支承部では、水平方向、鉛直方 向ともに支承耐力の10倍以上の作用力が生じる ことが推定され、支承が破壊することが推定され た。

以上より、耐震補強がなされなければ、アーチ 基部の支承部が破壊し、橋全体系の安定性に影響 を及ぼすとともに、アーチリブにおいてもクラウ ン部において局部座屈モーメントを超え、損傷し た可能性が推定された。一方、補強後にはアーチ リブの応答は弾性範囲内におさまっており、実際 の被害においてもアーチリブには損傷が生じな かった点をおおむね再現できている。

5. 結論

本研究では、2007年新潟県中越沖地震の強震 域に存在した耐震補強が施された鋼アーチ橋を対 象に、地震の際に生じた応答を推定するとともに 耐震補強効果の分析を行った。以下に本研究で得 られた結論を示す。

 当該橋梁では耐震補強としてアーチ基部の固定化、アーチリブへのコンクリート充填、アーチクラウン部の補強、端支柱の補強等が行われた。 新潟県中越沖地震では、アーチリブ、主桁等の主構造部材には変状、損傷は確認されなかった。

2) 本橋では、新潟県中越沖地震の際にアーチク ラウン部付近において橋軸方向には最大で70 mm程度、直角方向には500 mm程度の応答が生 じたと推測される。

3)本橋では、新潟県中越沖地震の際にアーチク ラウン部において橋軸方向の降伏曲げモーメント の91%に相当する曲げモーメントが生じていたこ と、アーチ基部付近にも橋軸方向、直角方向に対 して降伏曲げモーメントのそれぞれ75%、65%程 度の曲げモーメントが生じたことが推定された。 これは、実際の被害においてもアーチリブには損 傷が生じなかった点をおおむね再現できている。 4)補強前の状態で新潟県中越沖地震の地震動を 受けた場合には、アーチ基部の支承部が破壊し、 橋全体系の安定性に影響を及ぼすとともに、アー チリブにおいてもクラウン部において局部座屈 モーメントを超え、損傷が生じた可能性もある。 この推定結果と今回の地震で特段の被害がなかっ た点から考えると、耐震補強の効果が発揮された ものと推測される。

謝 辞

本研究に際し、対象橋梁の構造図面、設計計算 書は北陸地方整備局および北陸地方整備局長岡国 道事務所の関係各位よりご提供頂きました。また、 米山(道路)気象観測所の地震記録は、国土技術 政策総合研究所危機管理技術研究センター地震防 災研究室よりご提供頂きました。ここに記して厚 く御礼申し上げます。

参考文献

- 国土交通省国土技術政策総合研究所、独立行政法 人土木研究所、独立行政法人建築研究所:平成19 年(2007年)新潟県中越沖地震被害調査報告、土 木研究所資料、No. 4086、2008.
- (社)日本道路協会:道路橋示方書・同解説V耐 震設計編、1996.

独立行政法人土木研究所 構造物メンテナンス研究 センター橋梁構造研究グ ループ主任研究員、博(工) Dr. Junichi SAKAI

運上茂樹**

国土交通省国土技術政 策総合研究所危機管理 技術研究センター地震 災害研究官、工博 Dr. Shigeki UNJOH