特集:水系一貫した土砂輸送に向けて

宮崎県鰐塚山崩壊の流出土砂モニタリング

1. はじめに

台風や梅雨前線により大量の降水が山地流域に 与えられると、崩壊が発生し、大量の土砂が渓床 に堆積する。渓床に堆積した土砂はその後の降雨 により下流へ流されて再度堆積し、河床を上昇さ せる。特に、大規模な崩壊が発生し、大量の土砂 が渓床に堆積した場合には、長期間にわたって大 量の土砂が下流へ移動して行き、土砂移動に関わ る問題を新たに生じさせる可能性がある。

このように流域内の土砂移動に関する状況が大 きく変化すると、一般的には土砂災害を防止・軽 減するための砂防基本計画を見直すことになる。 最新の河川砂防技術基準同解説(計画編)¹⁾によ れば、砂防基本計画(水系砂防)は土砂量だけで なく、時間スケールと土砂の粒径も考慮した土砂 処理計画とすることとしており、さらに、土砂移 動に関する問題が顕在化している水系では総合的 な土砂管理にも配慮する必要がある。

しかしながら、大規模な崩壊後の土砂移動の経 年的な変化の実態はほとんど明らかになっていな い。そこで、本研究では大規模な崩壊後の土砂移 動の変化の実態を把握することとした。

2. 土砂移動モニタリングの概要と結果

2.1 観測地点

図-1は本研究で対象としている宮崎県宮崎市 田野町を流れる別府田野川の流域である。別府田 野川は日向灘にそそぐ清武川の支川で、鰐塚山に 源を発する。流域面積は19.13km²である。清武 川の河口には砂浜の赤江海岸が広がる。観測地点 は国道269号線が別府田野川を渡る橋の直下流で、 図中の●印である。なお、鰐塚山山頂付近にはア メダス観測所が設置されている。

平成17年台風14号は同年9月5日から6日にかけ て九州を北上し、鰐塚山のアメダス観測所におい て同月6日8時に最大時間雨量46.0mm/hを、同月

Observation of sediment transport after large-scaled landslides at Mt. Wanitsukayama

水野秀明* 稻村貴志**小山内信智***

図-1 別府田野川流域と観測地点の位置 5日11時から6日11時までの期間で最大24時間雨 量558.5mmを記録する豪雨をもたらした。この 豪雨に伴って、別府田野川流域内では大きな崩壊 が3ヶ所で発生し、別府田野川本川に大量の土砂 を堆積させた。既往の調査²⁾によると、崩壊土量 は561万m³、残土量は352万m³、不安定河床堆積 量は108万m³と報告されており、大量の土砂が渓 床に堆積している。

2.2 観測方法

土砂移動実態を把握する手段は既往の研究成果 3)で整理されているが、本研究では長期間継続す ることに加えて、総合的な土砂管理という観点よ り山地から河川・海岸に流出する土砂を対象とす ることを目的としたことから、流れの中に計測機 器を投入してその土砂容積濃度を計測して流砂量 を計測する「間接的な方法」を採用した。全流砂 量の時間変化の実態を把握することが理想ではあ るが、前述の目的を踏まえ、観測地点を浮遊形態 で通過する流砂を対象とした。これは、浮遊砂が 1回の出水でより遠くまで到達すると考えられる ためである。土砂移動モニタリングでは、土砂容 積濃度と流量を計測して、観測地点を通過する流 砂量を推定した。また、観測機器の維持管理に合 わせて、観測地点の河床の状況を撮影し、その変 化も記録した。

図-2は観測地点における横断と観測機器の設 置位置を示したものである。観測機器のシステム は水位計、濁度計、データロガーの3つの機器か

図-2 観測地点の横断形状と観測機器の配置 ら構成される。水位計はこれまでに出水による破 損のため4回交換した。静電容量式水位計①を平 成18年6月13日から同年8月8日まで標高90.19m、 静電容量式水位計②を同年8月8日から同年9月15 日まで標高90.64m、静電容量式水位計③を同年9 月15日から平成19年10月26日まで標高90.86m、 水圧式水位計を平成19年10月26日以降で標高 90.70mに設置した。静電容量式水位計の出力値 は内臓のデータロガーに記録したが、水圧式水位 計の出力値は濁度計の出力値を記録しているデー タロガーに記録した。なお、水圧式のものの場合 では式(1)に出力値を代入して算出した。

H=1.25(V-1.0)+90.70 ・・・(1) ここで、H:水位[m]、V:電圧[V]である。濁度 計は0~5Vで計測結果を出力する。その出力値は データロガーに10秒間隔で保存した。水位計は データロガー内臓のものを採用したが、観測期間 中の出水により破損したため、濁度と同様にデー タロガーに計測値を出力できる機器に付け替えた。 土砂容積濃度と水深は出力値を式(1)から(3)に代 入して算出した。

 $C=0.0093V^{2}+0.0708V$ · · · (2)

 $C=0.5004V^{2}+0.2917V$ · · · (3)

ここで、C:土砂容積濃度[%]、V:濁度計からの 出力値[V]である。なお、式(2)と(3)は既往文献4) に基づき、別府田野川で採取した土砂で 0.075mm以上の土砂を取り除いたものを用いて 設定した。

2.3 観測結果

観測機器が出水により破損したこと、落雷など により一時的に停電が生じたためデータロガーが 記録を停止したことなどにより、濁度計、水位計、 あるいはその両方のデータが欠落した期間があっ た。観測を開始してから平成20年3月13日までの 期間で、濁度計と水位計の出力値がともに記録で きたのは時間雨量20mmを超す一連の降水として は4回であった。

濁度計の出力値から土砂容積濃度を換算する際 には、式(2)、(3)に示した換算式が観測精度に大 きく影響を及ぼす。つまり、式(2)と(3)を作成す る際に用いた土砂の粒度分布の設定が重要となる。 著者らは、平成19年7月12日12:00から14:30 にかけて観測地点において流水を5回採取し、流 砂の粒度分布と土砂容積濃度を計測した。図-3 は流水中の土砂の粒度分布を示したものである。 土砂の粒度分布はレーザー分析により計測した。 その結果、土砂は大きいもので粒径0.2mmの細 砂であり、全体の95%程度が0.075mm以下のシ ルト・粘土であった。これは式(2)と(3)を作成す る際に用いた土砂と概ね同じ粒径の成分であった ことから、式(2)と(3)を用いたことは妥当と考え られる。また、土砂容積濃度は0.013~0.017%で あった。

図-4は観測を開始した平成18年6月13日から平 成20年3月13日までの観測結果で、上段から鰐塚 山アメダス観測所の降水量、観測地点における水 位、土砂容積濃度、累加浮遊砂量の累積値を示し たものである。なお、累積浮遊砂量は水位から推 定した流量に土砂容積濃度を掛け合わせた浮遊砂 量を累計した値で、浮遊砂とウォッシュロードの 合計量である。水位は降水量に応じて増減し、土 砂容積濃度も水位の変化に応じて増減した。土砂 容積濃度は平成18年7月末ごろまで0.6%程度と高 い値であったが、それ以降、0.1%程度と低く なった。土砂容積濃度は平成19年7月12日に流水 を採取して計測した結果と同じオーダーであった ことから、濁度計の出力値から推定した土砂容積 濃度の精度は実際のものと比べて大きく異なるも

図-3 流水中の土砂の粒度分布(平成19年7月12日採取)

図-4 観測結果

のではないと考えられる。累加浮遊砂量は平成 18年7月末までとそれ以降とで違った傾向を示し ており、前期では急激に増加し、後期ではゆっく りと増加している。なお、前述の通り、欠測期間 が存在しており、実際の累加浮遊砂量は図-4よ りも多いと考えられる。

図-5は濁度計と水位計の両方の出力値を得る ことができた降雨期間のうち典型的な傾向を示し た2事例について流量と土砂容積濃度の関係を示 したものである。その他の事例は既往文献5)を参 照されたい。図中の◇が流量の増加過程、◆が流 量の減少過程である。流量が増加すると土砂容積 濃度が増加し、流量が減少すると土砂容積濃度が 減少した。図-5(1)では流量の増加過程における 土砂容積濃度、初期を除き、は流量の減少過程に おける値より低くなり、図-5(2)では逆の傾向と なった。

図-6は観測地点における河床の横断形状の時 間変化を示したものである。測量を行った平成 18年6月5日から平成19年10月26日までの間で3 回計測したものをプロットした。河床は平成18 年6月5日時点で右岸側の護床ブロック付近で最

図-6 観測地点における河床の横断形状の変化 も低かったが、同年8月8日時点で埋め戻された。 平成19年10月26日時点での河床は平成18年8月8 日時点のものと比べると右岸側と左岸側で上昇し た。平成19年8月8日に観測地点付近の土砂を採 取し粒度分布を調べたところ、平均粒径7.09mm であった。0.075mm未満のシルト・粘土は1.2% 程度で、礫が80%以上を占めていた。最大で 60cm程度の石が河床上に堆積していた。

3. 考察

3.1 流出土砂量の経年変化

図-4より、欠測期間を除けば、平成18年6月13 日から平成19年6月13日までの1年間で観測地点 を通過した浮遊形態の流砂は10.8m³/日で、それ

以降で平成20年3月13日までの9ヶ月間で2.9m³/ 日であった。2年目のデータは平成20年の梅雨期 の観測値を含んでいないので直接的に比較できな いが、図-4の傾向を踏まえると、観測地点を通 過する浮遊形態の流砂量は減少傾向にあると推測 できる。また、図-6に示したように、観測地点 付近の河床は上昇傾向を示しているものの、その 上昇割合は鈍くなっていた。このことから、観測 地点を掃流形態で通過する流砂も浮遊形態と同様 に減少傾向にあると推測できる。

3.2 出水中における土砂容積濃度の時間変化

図-5(1)と(2)の相違点は流量の増加過程におけ る土砂容積濃度が増加する傾向である。土砂容積 濃度は流れの速度に合わせて下流へ伝搬すること から、流量の増加過程における土砂容積濃度は主 に観測地点付近の河床侵食による影響を大きく受 け、流量の減少過程における土砂容積濃度は主に 観測地点より離れた上流の河床侵食による影響を 大きく受ける。図-4より、図-5(2)の場合の降雨 は図-5(1)に比べて時間雨量の最大値も小さく、 降雨の継続時間も短かった。このことを踏まえる と、図-5(2)の場合では、観測地点付近の河床の 土砂が流れに取り込まれて観測地点を通過したも のの、流量が少なくなってしまい、観測地点より 上流の遠方における河床の土砂が観測地点まで到 達できなかったと考えられる。つまり、継続時間 が短い降雨であれば、流量の増加期間の土砂容積 濃度は流量の減少期間の値よりも高くなると考え られる。

4. おわりに

本研究では現時点までで以下の点が分かった。 (1) 観測地点を通過する浮遊形態の流砂は大規模 崩壊発生後経年的に減少傾向にあると推測できる。 (2)継続時間が長い降雨であれば、流量の増加 期間の土砂容積濃度は流量の減少期間の値よりも 小さくなる。逆に、継続時間が短い降雨であれば、 流量の増加期間の土砂容積濃度は流量の減少期間 の値よりも高くなる。

ここでは昨年度までの観測結果を報告した。長 期的な土砂移動の実態を把握するという目的から、 別府田野川における土砂移動モニタリングは現在 も継続している。今後は土砂移動モニタリング データの結果を蓄積するとともに、降雨流出解析 と河床変動計算を行い、土砂移動の実態の把握と 将来の変化を推測したいと考えている。

最後になりましたが、本研究を進めるにあたり、 九州地方整備局宮崎河川国道事務所、宮崎県砂防 課、財団法人宮崎県建設技術推進機構の関係各位 に多大な協力を賜りました。ここに記して感謝の 意を表します。

参考文献

- 国土交通省河川局監修、社団法人日本河川協会 編:国土交通省河川砂防技術基準同解説計画編、 山海堂、p.48-49、2005
- 谷口義信、内田太郎、大村寛、落合博貴、海堀正 博、久保田哲也、笹原克夫、地頭園隆、清水収、 下川悦郎、寺田秀樹、寺本行芳、日浦哲全、吉田 真也:2005年9月台風14号による土砂災害、砂防 学会誌、Vol.58、No.4、p.46-53、2005
- 水野秀明:流砂系における土砂移動実態に関する 研究、土木技術資料、46-3、p.14-17、2004
- 4) 小山内信智、水野秀明、林真一郎、沖中健起:濁 度計を用いた土砂移動緊急監視システムに関する 研究、国総研資料第332号、p.25-29、2006
- 5) 稲村貴志、小山内信智、水野秀明:別府田野川に おける大規模崩壊後の流出土砂量の変化、平成20 年度砂防学会研究発表会概要集、p.316-317、 2008

国土交通省国土技術政策総合研 究所危機管理技術研究センター 砂防研究室 主任研究官,博士 (農学) Dr. Hideaki MIZUNO

㈱荒谷建設コンサルタント四国 支社技術部(前 国土交通省国 土技術政策総合研究所危機管理 技術研究センター砂防研究室 交流研究員) Takashi INAMURA

小山内信智***

国土交通省国土技術政策総合研 究所危機管理技術研究センター 砂防研究室長,博士(農学) Dr. Nobutomo OSANAI