報文

表層崩壊に起因する簡易な土石流発生危険度調査・評価手法

1. 背景

砂防事業の更なる重点化、効率化を図るために、 土砂災害が発生する危険度の高い箇所からハード 対策を推進していくことが有効であると考えられ る。そのためには、膨大かつ広域に広がる土砂災 害の危険箇所の危険度を評価できる手法の構築が 必要となる。

1980年代から表層崩壊の予測手法として、浸 透流解析等の雨水流出に関する数値モデルと斜面 安定解析を組み合わせた手法が提案され、複雑な 自然現象に近づけようとモデルの改良が加えられ てきている^{例えば1)}。このような数値モデルを活用 することにより、機械的に土砂災害の危険度が評 価できる可能性がある。しかし、複雑な自然現象 の全てをモデル化することは困難な上、各現象を 支配する場の条件を測定し、数値モデルに入力す ることは非常に多大な労力を要する。実際、数値 モデルを用いて表層崩壊の危険箇所を抽出する試 みを行う場合、場の条件に関する情報は流域内の 数点の測定値の平均値などの代表値が用いられる 場合が多い²⁾。そのためか必ずしも表層崩壊発生 場所を精度良く予測できるとは言い難いのが現状 である。一方、近年、レーザープロファイラや簡 易貫入試験の改良など、場の条件(数値モデルの 入力条件)の測定技術に進歩が見られる。

そこで、これらの測定技術を用いて場の条件を 従来以上に精度良く計測することで、数値モデル は既存のコンセプトを用いても、表層崩壊発生場 所を比較的精度良く予測できる可能性がある。本 研究では、場の条件を精度良く計測することによ り、実用的な表層崩壊の危険度評価手法の提案を 行った。さらに、場の条件の値の分布特性を用い て、広域に適用可能な表層崩壊に起因する土石流 発生危険度評価手法の提案を行った。

2. 斜面単位の危険度評価

2.1 検討方針

Producing field survey and evaluation method for susceptibility of debris flow triggered by shallow landslide

内田太郎*盛 伸行** 田村圭司***

本研究では、数値モデルの入力条件が基本的に 実測できるもののみで構成されている簡易な物理 モデルを用いるとともに、入力条件を極力実測す ることとした。

複雑な雨水流出過程を取り入れたモデルを用い る場合、数多くのパラメータの設定が必要となる。 一方、地下水位を定常状態(ある地点を流下する 地下水流量はその上流域の集水域内に降った降雨 量と等しい)と仮定した上でモデル化しても、斜 面崩壊の危険箇所をある程度抽出できることが報 告されている3)~5)。さらに、斜面崩壊が発生する ような場合、土層が十分に湿っており土層内の含 水率の時間変化は比較的小さいと考えられること から、表層崩壊の発生場所の予測に絞った場合、 地中内の詳細な土層構造等の状況の把握が困難で ある現状を考えれば、定常状態を仮定したモデル 化はある程度妥当であると考えられる。そこで、 本研究においても、水文過程は定常状態を仮定す ることにより、モデル中のパラメータを減らし、 基本的に実測できる入力条件のみで構成されてい る手法を用いた。

2.2 手法

本研究において、斜面の安全率(Fs)は、無限長斜面安定解析の式より以下の式で求めた。

(1)

 $Fs(t) = \frac{c + (\gamma h \cos^2 I - u(t)) \tan \phi}{1 - u(t)}$

図-1 モデルの概念図

ここで、cは粘着力、γは土層の単位体積重量、 hは土層厚、Iは斜面勾配、γwは水の単位体積 重量、uは間隙水圧、φは土の内部摩擦角とした。

ここで、ダルシー則より、土層内の水深が地表 面に達しない範囲では以下のように表すことがで きる。

$$Q(t) = K_s \frac{u(t)}{\gamma_{vr}} \tan I$$
⁽²⁾

ここで、Q(t)は単位幅あたりの時刻tのある地点 の流下量、Ksは飽和透水係数γwは水の単位体積 重量である。

また、水に関する質量保存則から、Q(t)は式3 で表すことができる。

$$Q(t) = r(t)A + \frac{dv}{dt}$$
(3)

ここで、r(t)は時刻tの降雨強度、Aはある地点の 集水面積、vはある地点の貯留水量である。ここ で,水文過程は定常状態(dv/dt=0)を仮定し、 式1~3を用いて、安定解析式での安全率が1と なる降雨強度(r_c)について、式4が得られる。

$$r_{c} = \frac{K_{s} \sin I \{c + \gamma_{t} h \cos I (\cos I \tan \phi - \sin I)\}}{A \{\gamma_{w} \cos I \tan \phi + (\gamma_{s} - \gamma_{t})(\sin I - \cos I \tan \phi)\}}$$
(4)

 γ s、 γ tはそれぞれ、飽和状態、不飽和状態の土 層の単位体積重量で、 $\gamma = \{\gamma_s h_s + (h - h_s)\gamma_u\}/h$ 、 h_s は 地下水深とした。式4から、 \mathbf{r}_c は、任意の地点で、 測定可能な土層の単位体積重量、土層厚、斜面勾 配、土の粘着力、土の内部摩擦角、飽和透水係数、 集水面積から求まる。そこで本研究では、式4に より求まる \mathbf{r}_c が小さい地点ほど小規模な降雨で表 層崩壊が発生することを意味し、 \mathbf{r}_c が小さい地点 ほど危険度が高いと考えた。

2.3 検討対象流域とモデルの適用

2.3.1 検討対象流域

本検討は、広島市街地から西方約11kmに位置 する荒谷川流域の支渓で行った(図-2)。流域面 積は1.4ha、流域の斜面勾配は12~54°で平均 36°である(写真-1)。

1999年6月には、総雨量417mm、最大時間雨 量63mmの豪雨により、荒谷川で土石流が発生し、 多くの被害が発生している。本検討の対象流域内 においても、斜面崩壊が4つ発生した(図-3①~ ④)。

2.3.2 パラメータの設定

土層厚の設定は検討対象流域で簡易貫入試験を

図-2 荒谷流域の位置

写真-1 荒谷流域

概ね10~15m間隔で、計173点行った。崩壊地内 及びその周辺の貫入試験結果から、Nd=20程度 が崩壊面と考えられたため、検討に用いる土層厚 は各試験地点のNd=20の深度とした。なお、崩 壊地内の土層厚は簡易測量を行い、崩壊前の土層 厚を推定した。

飽和状態、不飽和状態の土層の単位体積重量は、 流域内で5試料を採取し、室内土質試験を行い、 パラメータの設定を行った。

豪雨時の斜面の等価飽和透水係数は、パイプ流 など選択的な流れの影響を受け、小さい土壌サン プル(例えば、100cc)で求めた透水係数より大 きい可能性が高い⁶⁾。そこで、本研究では、豪雨 時の現象の再現のため、検討対象流域内で継続し て行っている水文観測から得られた間隙水圧と流 量をもとにダルシー則にしたがうと仮定した手法 ⁶⁾に従い、斜面の等価飽和透水係数を算出し、用 いた。

図-3 崩壊危険降雨強度の算出結果

また、斜面の見かけの粘着力・内部摩擦角は根 系の影響や礫等の影響を受け、小さい土壌サンプ ルで用いた値と乖離している可能性がある。また、 実際の斜面崩壊発生時において、土壌が完全な排 水状態になるかどうか不明である。さらに、土の せん断強度は含水率の影響を受け、斜面崩壊は土 層内の最も弱い部位において発生すると考えられ る。そこで、本研究では、地形及び土層厚から粘 着力を逆推定した。ここでは、少なくとも、不飽 和時には、安全率が1以下になることはないと考 え、流域内で例外的に斜面勾配が急(54°)で かつ土層厚が大きい(390cm)1点を除いた地点 で、土層が不飽和状態で安全率が1を切らない範 囲の最小の粘着力(7.5kN/m²)を算出し、計算 に用いた。

集水面積ならびに斜面勾配については、貫入試 験実施箇所ごとに、地形測量結果ならびに簡易貫 入試験結果をもとに算出した基岩面の5mメッ シュの地形データを用いて算出した。集水面積、 斜面勾配の算出は、D-Infinity Flow Direction法 ⁷⁾を用いた。なお、D-Infinity Flow Direction法 は全方向を0.01[°]刻みで算出し、最急勾配の方向 を求めることで、上流側のメッシュから下流側2 メッシュに対して流下する流量の重み付けを行い、 流下させる手法である。

2.4 検討結果

前節で示した方法で設定したパラメータを用い てrcを算出した結果を図-3に示した。rcの値が小 さい箇所と実際に崩壊した箇所は、崩壊地②を除 き、概ね一致する結果となった(図-3)。

図-4 崩壊危険降雨強度と崩壊確率の関係

図-4にはr。ごとの崩壊確率(あるr。の全地点数 に対する崩壊地内の地点数の割合)を示した。崩 壊確率はr。が20mm/h以下の地点では6割弱、20 ~30mm/hの地点では3割強であるのに対し、r。 が30~100mm/hでは、崩壊地内に属する地点は1 つのみで崩壊確率は約3%、100mm/h以上で1% 以下であった。すなわち、r。が小さいほど、斜面 崩壊する可能性が高く、r。が斜面崩壊発生の相対 的な危険度を良く表しているといえる。

また、1999年の豪雨時の最大1、3、6時間平均 の降雨強度は、それぞれ、63、44、28mm/hであ り、崩壊地内のr_cが10~40mm/hであった結果と 概ね整合している。以上より、表層土層厚の空間 分布情報、レーザープロファイラに基づき計測し た地形データ、水文観測結果により設定したパラ メータを簡易な物理モデルに入力することにより、 表層崩壊箇所を比較的精度良く予測できることが 分かった。

3. 渓流単位の危険度評価手法

3.1 検討方針

前項までに検討した物理モデルは、降雨条件、 地形情報、土層厚、土質強度(内部摩擦角、粘着 力)、土の水理特性(水分特性曲線、透水係数) を入力条件として、斜面の安全率を出力するもの である。入力条件のうち、降雨条件、地形情報は 比較的容易に手に入るものの、土層厚、土質強度、 土の水理特性は広域で面的に情報を得ることは現 時点では多大な労力を必要とし、困難である場合 が多い。一方、実測結果に基づき、当該地域・渓 流の土層厚、土質強度、土の水理特性を確率的に でも評価できれば、ある程度地下の情報を取り入 れた崩壊発生確率を推定することができる。仮に、 斜面ごとの崩壊発生確率が算出された場合、崩壊 発生確率の高い斜面が多い渓流を土石流発生危険 度の高い渓流と評価すれば、渓流単位の土石流発 生危険度が求まることになる。

そこで、本項では、土層厚、土質強度、土の水 理特性から、斜面崩壊確率を算出し、斜面崩壊確 率に基づき、流域単位の土石流発生危険度を評価 する手法についてその有効性を検討する。

3.2 検討方法

安全率の算出にあたっては、前節同様、土層内 の間隙水圧は定常状態に達した状態を仮定し、式 1、2を変形し、式5で算出した。

$$Fs = \frac{c + (\gamma h \cos^2 I - \gamma_w \frac{Ar}{K_s \tan I}) \tan \phi}{\gamma h \cos I \cdot \sin I}$$
(5)

これにより、地下の情報に関するパラメータは、 ①土層厚、②粘着力、③土の内部摩擦角、④飽和 透水係数の4つとなる。また、定常状態を仮定し たことにより、飽和一不飽和の浸透流解析が不要 となるため、多ケースのシミュレーションが比較 的短時間で可能となる。

さらに、本研究では、メッシュごとに、ある降 雨条件下において、土層厚、土質強度、土の水理 特性を確率的に与え、当該降雨条件下において、 安全率が1以下となる確率を、「崩壊確率」とし て算出した。地下の情報を確率的に与えるにあ たっては、以下の式を用いた。

 $C = C_m + C_d \times rd$ (6) $C = C_m + C_d \times rd$ タCの平均値、CaはパラメータCの標準偏差、rd はモンテカルロシミュレーションで発生する正規 乱数である。正規乱数の発生には、Box-Muller の方法®を用いた。シミュレーション回数は 10000回とした。

3.3 手法の適用

3.3.1 検討対象地域

検討対象は、愛媛県新居浜市多喜浜地区の面積 3.22km²の地域である(図-5)。同地区は新居浜 市の背後に広がる標高300m未満の丘陵性の山地 であり、和泉層群の砂岩、泥岩からなる。同地域 は2004年の台風15号と21号により、表層崩壊や 土石流が多発した。検討対象地域内では108個の 表層崩壊が発生した。

3.3.2 パラメータの設定

土層厚は図-5中の流域13の崩壊地周辺で25点 土研式簡易貫入試験を実施し、平均値、標準偏差 を求めた。また、粘着力、土の内部摩擦角につい ては、貫入抵抗値と粒度分布より、粘着力および 土の内部摩擦角が推定できる若月ら(2007)のが 提案した式により、貫入試験結果と粒度分布の測 定結果より平均値及び標準偏差を算出した。さら に、飽和透水係数については、ここでは、六甲山 地において大型サンプルを用い、測定した Hedorayanto(1999)10のデータを参考に平均 値及び標準偏差を設定した。なお、算出の結果、 いずれのパラメータとも正規分布よりも、対数正 規分布に近い分布形を示したため、正規乱数の発 生にあたっては、対数値を用いた。

地形量の算出にはレーザープロファイラによる 地形データを用いて、10mメッシュで勾配、集水 面積を算出した。算出には、D-Infinity Flow Direction法を用いた。

3.4 検討結果

3.4.1 渓流ごとの危険度算出

対象地域を図-5に示すように0.04~0.46km²の 19の渓流に分割した。その上で、渓流ごとの危 険度を表す指標として、「崩壊危険面積(α)」お よび「崩壊危険面積率(α/A)」を式7、8でそれ ぞれ算出した。

$$\alpha = \sum_{i=1}^{n} a p_i \tag{7}$$

-23 -

$$\alpha / A = \sum_{i=1}^{n} a p_i / A \tag{8}$$

ここで、aは各メッシュの面積(=100m²)、pは メッシュiの崩壊確率(10000回の計算で安全率1 以下になる確率)、nは渓流内のメッシュ数、Aは 各渓流の面積である。

降雨強度を50mm/hにした場合の渓流ごとの崩 壊危険面積の算出結果と実際に2004年の台風で 発生した崩壊地数の関係を図-6に示した。図に 示したように、渓流単位で見た場合、算出された 崩壊危険面積と実際の崩壊地数とは正の相関が極 めて高く(r²=0.77)、崩壊危険面積は渓流単位の 表層崩壊発生危険度をよく表しているといえる。

また、図-7には、崩壊危険面積率と1km²あた りの2004年に発生した崩壊地数(以下、崩壊地 密度)の関係を示した。崩壊危険面積率が大きい にもかかわらず、崩壊地密度が小さい渓流はある ものの、崩壊地密度が高かった渓流は、崩壊危険 面積率も大きく、斜面崩壊が多発する渓流は概ね 抽出できていた。

図-5 検討対象地域 (愛媛県県新居浜地区)

写真-2 新居浜地区で発生した表層崩壊の様子

図-6 渓流単位の崩壊危険面積と崩壊地数の関係

図-7 渓流単位の崩壊危険面積率と崩壊地密度

以上のように、簡易な物理モデルと実測に基づき推定した土層厚・土質強度の確率分布を用い、 渓流単位で表層崩壊の発生危険度の評価を試みた ところ、概ね良い再現性が見られた。また、今回 対象とした3.22km²をパソコン(Intel CoreTM2 CPU 2.40GHz)を用いて計算するに要した時間 は、勾配・集水面積の算出に約2時間、その後の 崩壊確率の算出は15分程度であった。

4. 表層崩壊に起因する土石流危険度評価手 法

以上の検討結果から、表層崩壊に起因する土石 流の危険度評価に関する調査・検討のフローを図 -8に示した。表層崩壊に起因する土石流に関す る危険度評価は、まず、概略の危険度評価を行い、 その上で、危険度が高いと判定された渓流につい て、詳細な危険度評価を行う。詳細評価において は、概略評価において危険度が高いとされた渓流 の中で特に危険度の高い渓流の抽出、渓流内で発 生源として危険度の高い斜面、支渓の抽出を行う。 概略の危険度評価を行うにあたっては、3章で 示した「渓流単位の危険度評価手法」を用いる。

図-8 土石流危険渓流の危険度調査・評価フロー

具体的には、数値地形情報を用い、土質定数、土 層厚、透水係数は実測値を基に確率的に与え、単 純化した浸透流理論と斜面安定解析に基づく手法 により、渓流単位の危険度を評価する。

一方、詳細な危険度評価にあたっては、2章で 示した「斜面単位の危険度評価手法」を用いる。 具体的な調査は、土層厚の空間分布の測定、詳細 な地形測量、水文観測を行う。その上で、簡易な 物理モデルにより、危険度を精査する。

5. まとめ

本研究では、既存の物理モデルのコンセプトを 活用し、詳細な現地調査を行うことにより、表層 崩壊発生場所および発生する可能性が高い渓流を 精度良く抽出できることを示した。その結果を基 に、本研究では、表層崩壊に起因する土石流の危 険度評価に関する調査・検討のフローを提案した。 現在、地質・地形条件の異なる地域を対象にここ で示した手法の汎用性の確認を行っているところ である。

参考文献

- 内田太郎:近年における山地の土砂移動現象にか かわる斜面水文プロセス研究の進歩、砂防学会誌、 Vol.57、No.2、pp. 58-64、2004
- 例えば、平松晋也・水山高久・石川芳治:雨水の 浸透流下過程を考慮した表層崩壊発生予測手法に 関する研究、砂防学会誌、Vol.43、No.1、pp.5-15、1990
- 沖村 孝・市川龍平・藤井郁也:表土層内浸透水の集水 モデルを用いた花崗岩表層崩壊発生位置の予知のための手法、砂防学会誌、Vol.37、No.5、 pp. 4-13、1985
- Montgomery, D. R., and W. E. Dietrich : A physically-based model for the topographic control on shallow landsliding, Water Resources Research, Vol. 30, 1153-1171, 1994.
- 5) Pack, R. T., D. G. Tarboton and C. N. Goodwin : The SINMAP Approach to Terrain Stability Mapping," Paper Submitted to 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia, Canada 1998
- 6) Uchida, T., Y. Asano, N. Ohte and T. Mizuyama : Analysis of flowpath dynamics at a steep unchanneled hollow in the Tanakami Mountains of Japan, Hydrological Processes, Vol. 17, 417-430, 2003
- Tarboton, D. G. : A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, Vol. 33, 309-319, 1997.
- E根 久:モンテカルロ法・シミュレーション (現代応用数学講座4)、40-48、コロナ、1994
- 9)若月 強・佐々木良宜・田中幸哉・松倉公憲:簡 易貫入試験値と粒度組成を用いたマサ土の単位体 積重量とせん断強度定数及び透水係数の推定、砂 防学会誌Vol.59、No.6、38-46、2007
- Hendrayanto, Analysis on Spatial Variability in Hydraulic Properties of Forest Soils, Ph.D. Thesis, Kyoto Univ., 1999

東京建設コンサルタント㈱ (前独立行政法人土木研究所つ くば中央研究所土砂管理研究 グループ火山・土石流チーム交 流研究員) Nobuyuki MORI <u>田村</u>圭司***

独立行政法人土木研究所つく ば中央研究所土砂管理研究グ ループ火山・土石流チーム上 席研究員 Keiji TAMURA

-25-