排水機場の吸込水槽の性能評価へのCFD解析の適用性

1. はじめに

排水機場は、出水時に国民の生命と財産を守る ための重要設備である。これまで、機能や信頼性 を確保しつつ、コスト構造改善の要請に応える、 建設、更新、維持管理の効率化の種々の取組がな されてきた。また、機能向上(排水能力や運転水 位)に安価に応える要請もある。

排水機場で、同じ排水能力で、安くする方策の ひとつに、水の流れを速くし、主ポンプや流路を はじめとして、設備自体を小さくする方策がある。 この20年間程度で種々の取組があり、「揚排水ポ ンプ設備設計指針(案)」¹⁾(以下指針案)にも 反映されてきた。

図-1 排水機場透視図

我々の以前の取組では、ポンプ単機流量 10m³/s以下の吸込水槽について、(社)河川ポン プ施設技術協会との共同研究等により、模型実験 を行い、適切な標準形状・寸法・整流板を決定し、 指針案に反映した。

一方、コンピュータ性能および解析技術の向上
によって、CFD(Computational Fluid Dynamics)
解析の高精度化が進んでいる。CFD解析とは、
流体の基礎方程式を離散化し、コンピュータで解
を得る解析手法である。

本研究は、吸込水槽にCFD解析を用いた性能 評価を可能とし、模型実験が不要な範囲を拡大し、 排水機場の計画、建設、更新に資するものである。 山元 弘* 石松 豊** 河北憲治***

2. 研究の概要

2.1 吸込水槽に着目

排水機場の流路には、流入水路、吸込水槽、吐 出水槽、樋門・樋管がある。

吸込水槽においては、空気吸込渦や水中渦が発 生すると、ポンプに悪影響を及ぼすが、発生する 渦が水槽の大きさに比べて小さい等、解析が難し い。本研究は、この解決に着目している。

なお、流入水路には、水流の均等性が求められ るが、従前よりコンピュータ解析が行われてきた。 また、吐出水槽についてはサージタンクの役割を 果たすが、これを省略する場合の樋門・樋管の圧 力脈動による影響は、別途の検討がなされている ため、ここでは省略する。

2.2 研究のポイント

本研究では、模型実験による比較検証を行い、 CFD解析方法と有害渦発生の判定手法を提案す る。

端的には、対象の吸込水槽で可能な、最大ポン プ流量と最低運転水位を、あらかじめ計算可能と することである。

2.3 成果活用の想定

2.3.1 主ポンプの更新時

主ポンプ更新時には、背後地の状況が変化し要 求される排水機場の能力も変化していることが少 なくない。また既存の土木構造物を使って、少な い追加投資でポンプ能力を上げられる場合もある。

この時、既存の吸込水槽に整流板を追加するこ とで、どれだけ流量を増加できるか、運転水位を どれだけ下げることができるか、あらかじめ検討 できると都合がよい。更新の対象となるような年 代の排水機場では、吸込水槽にはある程度の余力 が期待できるのが通常である。

2.3.2 内水排除計画の見直し時

流域内の既存各排水機場で、前項と同様に検討 できると都合がよい。これは、効率的な内水排除 計画やB/Cの向上に資するものと考えている。

Availability of Numerical Simulation to Evaluate Pump Sump Performance of Drainage Pumping Station

2.3.3 新設機場の設計時

設計の自由度を上げることができ、また今後の 性能発注に向けては、一定の事前評価可能な手法 へのベースとなると考えている。

3. CFD解析の適用

3.1 CFD解析概要

CFD解析には、空間に格子を切る有限体積法 や、渦要素を追跡する渦法等がある。有限体積法 は、市販の汎用CFD解析ソフトに用いられてお り、解き方は多様にあるが、一般的に、複雑な流 れ場の計算には、細かい格子が必要で計算負荷が 大きい。

3.2 渦法

渦法は、流れ場を多数の微小渦要素によって離 散的に表し、渦要素の移動を追従することにより 非定常解析するものである。格子が必要なく、流 れの変化が激しい部分には自ずと渦要素が集中し、 詳細な計算がなされるようになっている。

3.3 吸込水槽への適用

吸込水槽では、渦がどこで発生するかわからず、 発生しても強さや位置が変化する非定常性がある ため非定常解析が望ましい。また渦径が小さいた め、高解像度が必要である。

<u>₩写真-21</u> 試験装置

渦法では、計算の解像度は自動的に調整され、 非定常解析も実用的な計算時間で可能である。こ のため、本研究では、渦法を用いている。

4. 模型実験の実施

4.1 実験条件

CFD解析結果による渦判定との比較のため、 水槽幅300mmの小模型で実験を行った。ポンプ を擬した吸上げ管内径は100mmである。試験装 置を写真-1に示す。水槽形状はH13年版指針案¹⁾ で新しく加えられた渦流防止板付吸込水槽とした (写真-2)。

4.2 試験結果

水位を150~300mm、流量を0.2~2.0m³/min 程度で変化させ、渦発生限界を求めるとともに、 渦の発生状況を観察した。空気吸込渦発生の様子 を図-2に、渦発生の有無の確認結果を図-3に示 す。図中の%は観察時間中の渦の発生時間の割合 である。

5. 吸込水槽のCFD解析

5.1 解析条件

模型実験と同形状の吸込水槽について、渦法で CFD解析を実施した。解析水槽形状を図-6に示 す。

5.2 解析結果

渦の発生が明瞭にわかる、水位250mm、流量 0.55m³/minの条件を計算した結果を図-5,6,7に 示す。模型実験結果と同じく、流入方向に向かっ て左側(図の下側)に渦が発生しているのがわか る。

6. 吸込水槽の性能評価

6.1 CFD解析による渦発生の判定

定量化の観点から、現状のCFD解析の精度を 踏まえつつ、その結果を利用した渦判定手法を検 討した。

6.1.1 伸張渦モデルと渦要素モデル

伸張渦モデルを付加して渦が空洞となるか否か を評価する手法²⁾は、実際に近い渦が予測されて おり、実用的手法として活用可能と考えた。^{3,4)}。

渦法は、流れ場を表す離散要素として上記の伸 張渦モデルと類似のモデルでミクロにとらえた渦 要素モデルを用いており、渦要素中心圧力を簡単

図-42 空気吸込渦発生の様子(水位230mm、 流量0.5m³/min)

図-53 空気吸込渦発生特性

図-4 解析水槽形状

に算出できる。渦要素中心圧力が最小値となる渦 要素が渦の中心にあるとみなせば、位置も定まる。 6.1.2 渦の判定

適切な対象検査領域を設け、その中の渦要素の 渦中心圧力の最低値を用いて、渦の発生の判定を 以下のように行うこととした。

$$\frac{p_{\infty} - p_c}{p_h} > 1$$
 空気吸込渦発生の判定 (1)

v/U 3.00 2.25 1.50 0.75

v/U

図-86 速度分布(水面とベルマウスの中間水位)

図-<u>79</u> ヘリシティ分布 (水面とベルマウスの中間水 位)

- $\frac{p_{\infty} p_{c} + p_{h}}{p_{\infty} p_{cr}} > 1 \qquad 水 中 渦 発生の判定 \qquad (2)$
- ここで、p_∞:渦要素の無限遠方の圧力
 - *p*h : 渦中心のヘッド圧
 - pc : 渦中心圧力
 - pcr : 飽和蒸気圧

である。空気吸込渦では渦中心圧力がヘッド圧よ り小さくなる場合、水中渦では渦中心圧力が飽和 蒸気圧より小さくなる場合に1より大きな値となる。

6.2 判定手法の結果と模型実験との比較

5章のCFD解析の結果を使い、前記の手法で渦 判定を行った。検査領域は水面および水面とベル マウスの中間水位とし、両領域で判定値が1を超 える状態が5%程度以上で空気吸込渦発生と判定 した。水位250mmの場合の判定値の時間変動を 図-8に、水位150mmも加えて模型実験との比較 を図-9に示す。後者はデータが重なるため、計 算結果は10mm水位を上げた位置に表示している。

比較の結果は良好で、少なくとも空気吸込渦に ついて、本判定手法が適用可能と考えられる。

7. おわりに

CFDによる渦発生の判定と模型実験との比較 を行い、通常の渦流防止板付オープン形吸込水槽 では精度良く渦発生限界を予測できることがわ かった。これにより、CFDを活用した吸込水槽 の性能評価がある程度可能となった。

通常設けられる底面十字板の水中渦抑止効果は 高く、空気吸込渦が支配的になるため実用上の問 題はないが、今後、他形状や水中渦について実際 の試行等により検証していくことも必要である。

この結果に基づき、発注者側でCFDを活用し た検討が行えるように『CFD解析によるポンプ 吸込水槽の性能評価手順書』を作成した。

今後は、現場で試行いただき、この手順書を用 いて、実際の更新検討機場でCFDを用いた吸込 水槽性能の検討を行い、その有効度を示した上で CFDの活用を促進していきたいと考える。

- 2)Burgers, J. M., "A mathematical model illustrating the theory of turbulence", Advances in Applied Mechanics, 1 (1948), pp.171-199, 1948
- 3) ターボ機械協会:ポンプ吸込水槽の模型試験方 法」、ターボ機械協会基準、TSJS 002、2005
- 4) 山元弘、山本幸広: CFDを活用したポンプ吸込水 槽の性能評価手法に関する研究、土木技術資料、 Vol.47 No.6, pp.58-63, 2005

豊** 河北憲治*** 山元 弘* 石松 独立行政法人土木研究所つくば 株式会社酉島製作所研究開発部 独立行政法人土木研究所つくば 中央研究所技術推進本部先端技 中央研究所技術推進本部先端技 術チーム主席研究員 術チーム主任研究員 Hiroshi YAMAMOTO Yutaka ISHIMATSU

参考文献

(社)河川ポンプ施設技術協会:揚排水ポンプ設 1) 備設計指針(案)同解説、2001

-31 -

(前 独立行政法人土木研究所つくば中央研究所技術推進本部先 端技術チーム主任研究員) Kenji KAWAKITA